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SLOPES, WALLS AND DAMS.

CHAPTER L
EARTHWORK SLOPES.

ARTICLE 1. EQUILIBRIUM OF LOOSE EARTH.

Earthwork slopes are the surfaces formed when excava-
tions, embankments, terraces, mounds, and other construc-
tions are made in or with the natural earth. The earth is to
be regarded in discussion as homogeneous and inelastic, and
as consisting of particles more or less united by cohesion be-
tween which friction is generated whenever exterior forces
tend to effect a separation. As some kinds of earth when
dry are destitute of cohesion, these will first be considered
under the term “loose earth.”

The friction of earth upon earth will be taken to be gov-
erned by the same approximate laws as for other materials,
namely: - first, the force of friction between two surfaces is
directly proportional to the normal pressure; second, it varies
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with the nature of the material ; and third, it is independent of
the area of contact. These laws may be expressed by the
equation

F=fN, . o v v ... ()

in which &V is the normal pressure, F the force of friction
perpendicular to N, and f is a quantity called thé coefficient
of friction which varies with the kind of material. As F and
N are both in pounds, fis an abstract number; its value for
earth ranges from about 0.5 to 1.0.

If a mass of earth be thoroughly loosened so as to destroy
all cohesion between its particles, and then be poured verti-
cally upon the point D in the horizontal plane BC, it will form
a cone BAC, all of whose elements 4B, AC, etc., make equal

angles with the horizontal. This angle 4BC is called the
“angle of repose,” or sometimes “ the apgle of natural slope,”
and it is found by experiment that e l.ind of earth has its
own constant angle. The particleg”of earth on such a slope
are held in equilibrium by the ’£6’rces of gravity and friction.
Let @ be the angle of repose.ABD, and f the coefficient of
friction. In the figure draw W vertically to represent the
weight of a particle, and let V and F be its components nor-
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mal and parallel to the slope. Now since motion is about to
begin,

F=fN.

Also since the angle between Vand W is equal to the angle
of repose @, the right-angled triangle NOW gives

F=MNtan¢.
Therefore results the important relation

S=tanog, . . . . .. .. (2

that is, the coefficient of friction of earth is equal to the
tangent of the angle of repose. It is hence easy to determine
Jf when ¢ has been found by experiment.

In building an embankment of loose earth it is necessary
that its slope, or angle of inclination to the horizontal, should
not be greater than the angle of repose. When making an
excavation it is often possible, on account of the cohesion of
the earth, to have its slope at first greater than the angle of
repose, but as the cohesion disapp€ars under atmospheric in-
fluences the particles roll down and its slope finally becomes
equal to ¢.

The following table gives rough average values of the
angles of repose and coefficients of friction of different kinds
of earth. In the fourth column the inclination or slope is ex-
pressed in the manner customary among engineers by the
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ratio of its horizontal to its vertical projection. In the last
column average values of the weight of the material are given.

. Angle Coefficient Weight,
o of Inclinati
Kind of Earth, Repose. | Friction.
Kilos per| Pounds
¢ Va cot ¢ cu. met. |per cu. ft.
Gravel, round.....o0000eeeeses] 30° | 0.58 [ I.7to 1 | 1600 100
Gravel, sharp......... vesesees| 40 0.84 1.2t0 I 1700 110
Sand, dry.....c.convennnn. veee| 35 0.70 1.4t0 1 1600 100
Sand, MOiSt.eceveeerenccccases]| 40 0.84 1.2to I 1700 110
Sand, VEry Wet....ooceiesasessl 30 0.58 1.7t0 I 2000 125
Earth, dry........... veeessess] 40 0.84 1.2t0 I 1440 90
Earth, moist.......cc0e00.. ...l 45 1.00 I tor 1520 95
Earth, very wet....ccoeueeenne| 32 0.62 1.6to 1 1840 115

It will be noticed that the natural slope and specific
gravity of earth undergo quite wide variations as its degree
of moisture varies. In collecting data for the discussion of
particular cases it is hence necessary to determine limits as
well as average values.

Problem 1. A bank of loose earth is 16 feet high, and its
width, measured on the slope, is 28 feet. Compute the co-
efficient of friction and the angle of repose.

ARTICLE 2. THE COHESION OF EARTH.

Cohesion is a force uniting particles of matter together.
If, for instance, two surfaces have been for some time in con-
tact, they become to a certain extent glued or fastened to-
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gether so that any attempt to separate them is met by a
resistance. Friction only resists the separation of surfaces
‘when motion is attempted which produces sliding, but cohe-
sion resists their separation whether the motion be attempted
' parallel or perpendicular to the plane of contact. Particles of
rock are held together by strong cohesive forces, while parti-
cles of dry sand have little, if any, cohesion.

By experiment the following are found to be the laws of
cohesion : first, the force of cohesion between two surfaces is
directly proportional to the area of contact ; second, it depends
upon the nature of the surfaces; and third, it is independent
of the normal pressure. These laws may be expressed by the
equation

fn which C is the resisting force of cohesion between two
surfaces, 4 the area of contact, and ¢ a quantity called the
coefficient of cohesion depending upon the nature of the
material. '

The value of ¢ for homogeneous earth may be found as
follows: Dig in the ground several trenches of considerable
length compared with their width, and of different depths.
After a few days it will be observed that all those over a cer-
tain depth have caved along some plane such as B/ in Figure
2. Let A be the value of this certain depth. Let w be the
weight of a cubic unit of earth, and ¢ its angle of repose when
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devoid of cohesion. Then the coefficient of cohesion of the
earth may be computed from the expression

Huw(1 — sin ¢)
c=——"=
4 cos @

‘This formula will now be demonstrated.

Let the plane BM in the figure make an angle x with the
horizontal. The prism BAM, whose length perpendicular to
the drawing will be taken as unity, tends to slide down the -

FiG. a. \

plane. Let W be the weight of this prism, and P and N its

. components parallel and normal to BM. P tends to cause
motion down the plane, and this is resisted by the combined
forces of friction and cohesion, acting in the plane. The force
of friction is /V, and that of cohesion is ¢/, if / be the length,
or area, of BM. At the moment of rupture

P=fN-+d,
from which the value of ¢ is

P—fN
c= lf........(4)
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Equation (5) will determine the value of x, and then ¢ will be
found from (4).

To do this insert first for P its value W sin x, for NV its

value W cos % a.nd for f 1ts value tanqb Thgn (5) beco
I Ry ey g T b
¢ -—-(smx —tan ¢ cosx) = a maximum. .
T( dzw.)u ?9-——(“9-)‘)/'-"_'-’ A
This may be written" - T GG’J ?f e
Wsm(x_—_i) = a maximum, A
/cos @

Next express W in terms of A and z, and the weight of a
unit of volume of earth w. Thus

W = $Hlw sin (go° — ),

and then (5) becomes

Huw sin (902 co:?psm (x— ) = a maximum. (/ ;‘
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This expression is a maximum when the two variable factors
? are equal; or when -
9Q° —zx=2z— . : R
. . \,.\,L,
Thus the value of x for the plane of rupture is . a‘ .
1 et
- . L.
s T LY
! r=45"+3¢. .. v L (6)
A\
Now to find ¢, insert in formula (4{the values of P, &V, and
Jin terms of z, and it becomes
Hw sin (90° — ) sin(x — @)
€= 2 cost- '
A
which by virtue of (6) reduces to
| _ Huwsin' (45° — §9)
- 2 cos'? ‘ :
/ .
Vi ? r

Since §in® (45 — §¢) equals #(1 — sin ¢), this value becomes

c=H£(I — sin @)

Y N ¢4

- which is the formula that was to be demonstrated.

From this formula the numerical value of ¢ can be com-
puted when A, w, and ¢ are known. For earth weighing 100
pounds per cubic foot and whose angle of natural slope is 30

" degrees, the value of ¢ becomes 14.4/4. If the vertical ruptur-
ing depth H is one foot, ¢ is 14.4 pounds per square foot; but
if H is ten feet, then ¢ is 144 pounds per square foot.
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Problem 2. A certain bank of earth, which has a natural
slope when loose of 1.25 to 1, stands by virtue of its cohesion
with a vertical face when A = 3 feet. If this bank fails, find
the slope immediately after rupture.

ARTICLE 3. EQUILIBRIUM OF COHESIVE EARTH.

If the particles of earth be united by cohesion, a slope may
exist steeper than the angle of repose. Let Figure 3 rep-
resent the practical case of an excavation ABC whose slope
AB makes an angle 6 with the horizontal greater than the

-

FiG. 3.

angle of repose ¢. AM is the natural surface of the ground
making with the horizontal an angle ¢ less than ¢. It is re-
quired to determine the relation between the slope 6 and the
vertical depth % in order that rupture may just occur:

Let BM be the plane along which rupture occurs, and x its
inclination to the horizontal. The weight of the prism BAM
tends to urge it down the plane, and this is resisted by the
forces of friction and cohesion acti - the plane. Let W be

. EQE L IQ RaA

- g "?y
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the weight of the prism for a length unity, and P and AV its
components parallel and normal to the plane. 2 is the force
causing the downward sliding, fV is the resisting force of
friction, and ¢/ that of cohesion, if / be the area, or length, of
BM. At the moment of rupture P = fN + ¢/, whl/;lmay be
written 0;— ‘P(fv’/ +ct L \c L

c-
PlfN=c........(8)£"/<

Now as x varies the forces, P and &V vary; and for any other

— fN

7 is less than ¢. Hence

plane except that of rupture

the condition which will determme the value of x is
./\L.'O soaalny X /I‘ “"/‘; r1‘/4

=amaximum. . . . . . (9)

When 2 has been found from (g) its value is to be inserted in
(8) and thus the relation between # and % be established.

To do this insert in (g) for P and NV their values W sin

and W cos z, a.nd for £ its value tan ®. Then it takes the form. y
3% K Faghic s = = B lduuy [on p st
l 4('.1.'. v(-(, ~¢ %sm(x-—tﬁ) 'e
4 ——————= = a maximu
ot Y . lcos¢p

The value of W is the volume of the prism BAM, multiplied
by the weight of a unit of volume ), or

sin (6 — z)
W = $BA.BM.w sin(0 — z) = §hlw sind

R RN VY | R
) 7 C(-uu l’\ "“ -L:
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4 LAY .
. o L ¢ L- Y . o
and hence the expression becomes "‘3 * v

't‘

fw sin (6 — z) sin(x — ¢) = a maximum /‘M(q

2 cos @ sinb
This is a maximum with respect to x when S ;‘ ,»
Yo, L .b
b—z=2z—¢; e T

that is, the plane of rupture bisects the angle between the
lines of natural slope and excavated slope, or

x=1}(0+¢)3/. N ¢ 10))
Now if (8) be expressed in terms of z, it becomes
kw sin (0 — %) sin(z — @) = 2¢ cos ¢ sin 6,
and by virtue of (10) this reduces to
kw sin® 3(0 — @) = 2¢ cosp sin b;

a.nd substituting for sin® (6 — ¢) its value (1 — cos(f — ¢))
and f#dm c its value from (7), there is found

——

A(1 — cos (6 — ¢)) H(I - su'1 ¢)sinf, . . (11)

(., AT A
.\\.\ ,"ll[ \ fl

and this is the equation of condition between % and 6.

- am

This discussion shows that both the angle of rupture # and
the relation between % and 6§ are independent of the slope ¢
made by the natural surface of the ground with the horizontal. -

L]
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By the help of formula (11) the limiting height 2 may be
found when 6, ¢ and A are given. For instance, let it be
required to build a slope of 1 to 1, or @ = 45° and let the
earth be such that ¢ = 30° and &/ =6 feet. Then the depth
at which rupture will occur is

(r —o.5)0.707
b=6—— T—0966 = 62 feet.
For stability the depth must of course be less than 62 feet,
and precautions be taken that the cohesion of the earth be not
destroyed by the action of the weather.

Problem 3. Let a bank whose height is 30'. feet and slope

45 degrees be of earth for which ¢ = 34° and H = 3 feet.

How much higher can it be raised, keeping the same slope,
before failure will occur? =/ %*

ARTICLE 4. STABILITY OF SLOPES IN COHESIVE EARTH.

“»

In practice it is desired to determine the slope of a bank
so that it may be stable and permanent. To deduce an equa-
tion for this case consider again Figure 3, and let BM be any
plane through the foot of the slope making an angle » with
the horizontal. As x varies the forces P and NV vary, and it is
easy to see that the weakest plane is that for which the expres-

l

sion is a maximum. Asin Arta, the value of x ren-
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dering this a maximum is r = (6 4+ ¢). Now it is required
that rupture shall not occur along this plane, hence,;

P<fN4c and P—fN<ddy¥

or if » be a number greater than umty, called the factor of
security, N ,.(‘, 4{,; oy L"w, 2a.33n

i -
WP —fN)=cl. . . . . . . (12)

Rupture can now occur only when the weight W becomes #
times that of the prism of earth above the weakest plane. To
adapt this equation to practical use it is only necessary to sub-
stitute for Pand N their values in terms of z, and then to make
z equal to (0 4 ¢). The substitution is performed exactly
as before, and leads to the following result: A

nlz(l — cos (0 — ¢)) H(l — sm ¢) sm0 .. (13)
P’ L] {ta \ - -
which is the required equatlon of stablhty
/[%7(\“.\- yeade ’{\Bm atledt /7“ v '/{
If # is unity, this of course reduces to the cade of rupture
as given by (11). The value to be assigned to the factor 7 can
only be determined by observation and experiment on existing

slopes. Probably about 2 or 3 will prove to be sufficient.

When 6 is given, the value of % is derwed at once dlrectly
from (13), thus:

__H(1 —sing)sinb
=Wi—cosB—@y * ' (19)
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n'i/?" X SR W ’f"‘t"<h, '

&fv <
This shows that the helgh,t for secu?ty should be = oty that
n>/ ﬁ/ﬁl.cu,"z n
for rupture. Thus it wasfound in Artidle 3, if A = 6 feet, and

¢ = 30°, that the limiting height for a slope of 45° would be

" 62 feet. Hence with a factor of security of 2 the height would

be 31 feet, and with a factor of 3 the height would be 20 feet.

When £ is given and § is required, the formula for stability
may be written in the form '

1 — cos(f — @) =H(1 —sing)

sin 0 nk

The second member is here a known quantity and may be
called 2. By developing the numerator in the first member
and then substituting for sin § and cos 6 their values in terms
of tan $6, a quadratic expression results whose solution gives

a-|—sm¢
tan 0 = fi::)nszq—\/—ta" T AR

This determines the slope 6 for a factor of security 7.
For example, let it be required to find the slope 6 for a

bank 25 feet high with a factor of security of 1.5, the value of
¢ being 30° and that of A being gfeet. Here

= 5XO05
a_ISX25_0.0667,

o l/
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and then from the formula,

tan 460 = 0.304 + ¥ — 0.0718 + 0.0922 = 0.447.

Hence %6 is about 24° and 6 is about 48°, or a slope of 0.9 to 1,
The slope when built must of course be protected from the .
action of the weather in order to preserve the cohesion of the
earth. ‘

} " The security of a bank may be investigated by measuring
its height % and slope 6, and finding by experiment the angle
of repose ¢ and vertical rupturing depth H. Then from (13)
there is found

__H({1 —sing) sinf
=i —cosG—g) °

. . . (16)

For example, let it be required to find the factor » when
& = 30 feet, 0 = 45°, ¢ = 34°, and A = 3 feet. Substituting,

3><0441><0707 I
30 X 0.0184 =17

If such a slope had existed many years, and if the values of ¢
and A were the most unfavorable that could occur, it might
be concluded that the factor of security deduced is sufficiently
high; but if such a slope should be observed to fail, it would
be necessary to conclude that the factor is too low.

Problem 4: A certain slope has % = 25 feet, ¢ = 30°, and
H =g feet. At what angle 6 will rupture occur? What is its
factor of security if 6 be 48 degrees?
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ARTICLE 5. CURVED SLOPE§ AND, TERRACES.

The preceding articles clearly show that the angle of slope
0 of a bank of cohesive earth increases as its vertical height £
decreases, and, conversely, that as 2 becomes greater 6 be-
comes smaller. It would hence appear that the upper part of
a bank may be steeper than the lower part, and its liability to
rupture be the same throughout. To determine the form of

FiG. 4.

such a cyrve, let D in the figure be any point upon it whose
ordinate Dd is y. Let DM be the weakest plane making an
angle x with the horizontal. The prism of which DM is a
section, by virtue of its weight W, tends to slide down the
plane. Let P and NV be the components of W parallel and
normal to the plane. If # be the factor of security, the condi-
tion, as in Art. 4, is '

n(P—fN)—cl=o.

By inserting for P, N and / their values in terms of #, this
becomes )

nW(1 — f cot ) — ¢y(1 + cot® ) = 0.
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The value of W for a prism one unit in length is found from
the difference of the areas DM and dDa, or if A represent

the surface dDa, e 1///‘,4/ \
W= 1w}y cot x — 4). . 71‘/‘ '.._"'

By inserting this the equation of stability becomes
nw(y' cotx — A) (1 — fcotz) —¢y(14cot’zy=o0. (17) s "

This expression equals zero for the weakesgflane, but for any , .
other plane its value is less than zero.” Hence it must be a
maximum with respect to x or cot z, and its first derivative
must vanish. Thus, also, ﬁv—b& W et coret /n..//, (,,/ tes
X Veeriea,
nw(«}]’ cotxr — A) (—f) + nw(1 — f cot 2)3()*) — 2¢y cotx =o. (18)

By eliminating cot # from (17) and (18), the following value
of 4 is found: 4

= srater + 46 — 2 Vi F 20 F 7). (19

and this is‘the‘practical equation of the required curve, 4
e

being the area between the curve and any ordinate whose

value is .

For example, let it ‘be required to construct a curve of
equal stability in a bank of 40 feet height with a factor of
security of 1.5, the earth having a natural slope of 31°, a verti-
cal rupturing depth of 5 feet, and weighing 100 pounds per
cubic foot. Here, from (2) and (7), there is first found

J =06, c¢= 71 pounds per square foot,
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and formula (19) becomes

a=2] ooy +284— 24153 6oy F 142)]-

From this are computed the following special values:

For y = 10 feet A = 27 square feet;
For y = 20 feet, A = 159 square feet;
For y = 30 feet, A = 421 square feet;
For y = 40 feet, A = 809 square feet,

These are the areas between tie slope and the given ordinate,
and may be practically regarded as consisting of trapezoids,
as shown in Figure 5. The first area is that of the triangle
abB, hence

~

3.10.ab=27, or b= 5.4 feet.

The second area comprises the triangle 445 and the trapezoid
bBCc, hence

27+

Ot h=1sg or bo=88tet.

In a similar manner ¢d = 10.5 feet and de = 11.1 feet, and the

four points B, C, D, and E are thus located. In Figure 5 the
portions of the slope are drawn as straight lines ; it may be so

built, or intermediate points of the curve be established by the

eye.
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It is not difficult to deduce from (19) the co-ordinate equa-
tion giving the relation between the -abscissa and ordinate for
every point of the curve, but it is of such a nature as to be of
little practical use. In the manner just explained, as many
points upon the curve may be located as required. It is seen
from (19) that A4 is negative for small values of y, or theoreti-

Fic. 5

cally the curve overhangs the slope. Practically, of course,
the equation should not be used for values of y less than A,
and it will usually be found advisable and necessary that the
upper part of the curve should be reversed in direction so as
to form an ogee, as shown by the broken line 4B in Figure 5.

v

When terraces are to be constructed, it is evident that the
upper one may have the greatest slope and the lower one the
least slope. Formula (19) may be used for this purpose, since
the area A is not necessarily bounded by a curved line, but
may be disposed in any form desired. . -

For example, take a bank 30 feet high in which it is
desired to build three terraces, as in Figure 6, with a factor of
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safety of 1.5. The height of each terrace is 10 feet, and there
are two steps BC and DE, each 4 feet wide. Let w = 100

FiG. 6.

pounds, ¢ = 31°, and A = § feet, as found by experiments.
Then /= 0.6 and ¢ = 71, and formula (19) becomes

A= 2 {284+ 00y — 2 ¥ TB30007 T 129).

From this, when y =10, 4 = 27; when y =20, 4 = 159; and‘
when y = 30, 4 = 421. The abscissas are now found to be
ab = 5.4, cd = 6.1, and ¢f = 8.9 feet. The three slopes are

hence as follows :

For aB, cotf=2% and o=6ip;

For CD, cotd =%I and 6 =584°;

For EF, cotf = and 0 = 48%°.

313
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To insure the permanency of these slopes they should be
protected from the weather by sodding.

Problem 5. Design a terrace of four planes, the upper one
being 6 feet in vertical height, the lowest 10 feet, and the
others 8 feet; the steps to be 5 feet in width. The earth is
such that cot ¢ = 1.5 to 1, and A = 3 feet.

ARTICLE 6. PRACTICAL CONSIDERATIONS.

The preceding theory and formulas can be usually applied
to the construction of embankments as well as to excavations,
provided that care be taken to compact the earth to a proper
degree of cohesion and the slopes be protected from the action
of the elements. The height % is always given, and it is re-
quired to find the slope §. Unless % be very large the weak-
est plane will intersect the roadway; but if not, the application
of the formulas can only err on the side of safety. The load
upon the roadway can be regarded as a mass of earth uniformly
distributed over it and thus incieasing the height 4.

For instance, if 2o = 100 pounds per cubic foot, ¢ = 34° and
H = 4 feet, let it be required to find the slope 6 for an em-
bankment 30 feet high. For security the weight of the loco-
motive should be taken high, say 6000 pounds per linear foot
of track, or about 500 pounds per square foot of surface for a
12-foot roadbed, which would be equivalent in weight to a mass
of earth about 4 feet ‘high. Then the value of % to be used
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in formula (15) is 34 feet. If the factor of security be 2, the
value of a is 0.0259, and

tan §0 =o0.320+ ¥ — 0.0935 + 0. 1624 =0.414.

Hence 36 is about 224 degrees and 6.is about 45°, or the slope .
is 1 to 1. The proposed embankment with this slope contains
47 cubic yards per linear foot, while with the natural slope of
34° it would contain 62 cubic yards per linear foot. A saving
in cost of construction will hence result if the expense of pro-
tecting the slopes to preserve the cohesion be not too great.

The degree of moisture of earth exercises so great an influ-
ence upon its specific gravity and angle of repose that special
pains should be taken to ascertain the values of those quanti-
ties which are the most unfavorable to stability. In general
a high degree of moisture increases w and decreases ¢. These
causes alone would tend to increase the cohesion, but at such
times A usually becomes so small that ¢ is greatly diminished.
The determination of A is awkward and there seem to be few
recorded experiments concerning it. Care should be taken
that the trench is long, or that transverse cuts be made at its
ends so that lateral cohesion may not prevent rupture, and a
considerable time should be allowed to elapse so that the co-
hesion may be subject to unfavorable weather.

The general cor;clusions of the above theory are valuable,
but it should be applied with caution to particular cases, not
only on account of the variability in the data but on account
of our ignorance of the proper factor of security. Numerical
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computations, however, xhay often prove useful as guides in
assisting the judgment. As shown above, a great saving in the
cost of moving material will result if slopes be built in accord-
ance with the theory, but evidently the cost of properly pro-
tecting the slopes will be increased. Should the latter cost
prove to be the smaller, the theory will ultimately become of
real practical value.

The preceding theory is not new, having long since been
set forth in many French and German books, but the author
is unaware to what extent it is practically used in those coun-
tries. The introduction of a factor of security is, however,
believed to be novel in this connection, and by propet experi-
ments for determining its value the practical application of the
formulas here given may perhaps be rendered possible,

Problem 6. A railroad cut is to be made in material for
which 2 = 100 pounds per cubic foot, ?: 32°, H = 35 feet.
If % is 40 feet and the roadbed 16 feet wide, find the quantity
of material necessary to excavate when the slopes have a fac-
tor of security of 3.  94°



24 THE LATERAL PRESSURE OF EARTH. [Cuar. 1l

CHAPTER II.
THE LATERAL PRESSURE OF EARTH.

* ARTICLE 7. FUNDAMENTAL PRINCIPLES.

A retaining wall is a structure, usually nearly vertical,
which sustains the lateral pressure of earth. In investigating
the amount of this pressure it is generally regarded best to neg-
lect the cohesion of the earth, and to consider it as loose
(Article 1). This is done, partly because the effect of cohesion
is difficult to estimate and partly because the results thus ob-
tained are on the side of safety for the wall,—the entire inves-
tigation in fact being undertaken for the purpose of using the
results in designing walls. The values given in Article 1 for
the weight of earth and for the angles of repose will be used
in this chapter, but it is again mentioned that they are subject
to much variation, and that in practical problems the values
most dangerous to stability should be selected.

The pressures against a retaining wall are least near the
top and greatest near the base. The resultant of all these
pressures is called the “resultant pressure,” or simply the pres-
sure, and is designated by the letter 2 The determination of
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formulas for the values of 2 for different cases is the object of
this chapter.

Let the resultant pressure P against the back of a wall be
resolved into a component /V acting normal,and a component
F acting parallel,to the back of a wall. Let 2 be the angle
between AV and the direction of P; then

F= Ntanas
Let f be the coefficient of friction between the earth and the
wall, then for the case of 1nc1p1ent motion, » .- . o0 X ",
F=Nf.

Therefore, since fis the tangent of the angle of friction, the
angle 2 cannot be larger than the angle of friction between the

A\

"G 7.

earth and the wall unless the earth is moving along the wall.
Various views are held by authors regarding the direction of
the pressure P, or the value of the angle 2. Some take z as
zero, or regard the thrust as normal to the wall; others take 2
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as equal to the angle of repose of the earth, ¢; while a few
take s as intermediate between these values.

In Article 8 the friction of the earth against the wall will be
neglected, or the angle z will be taken as 0°. The value of the
pressure determined under this supposition will be called the
“normal pressure,” and will be designated by £,. It is not to
be forgotten that the actual pressure against the back of a re-
taining wall cannot, like the pressure of water, be determined
with certainty. The formulas to be deduced are such that, in
general, they give limiting maximum values under the different
conditions, and the hypothesis here adopted has the practical
advantage of erring on the side of safety for the wall. Inan
unlimited mass of earth with horizontal surface, the pressure
against any imaginary vertical plane must evidently be normal
to that plane; now if a wall is to be designed to replace the
earth on one side, the pressure against its back will also be
normal. It would seem then, that the most satisfactory de-
gree of stability of the earth will be secured by designing the .
wall under the assumption of normal pressure.

The views just expressed are, howevet, not accepted by
some engineers who claim that the actual normal pressure is
usually less than the values theoretically deduced for P,, par
ticularly for walls that have been observed to fail. In Article
g there will hence be investigated formulas for the pressure
supposing that it is inclined to the normal to the back of the
wall at an angle ¢@; the value of the pressure thus derived \will
be called the “inclined pressure,” and be designated by P,
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Hence either P, or P, can be used in investigating the wall as
the engineer thinks best.

Problem 7. Let the wall in Figure 7 be vertical, 12 feet in
height, its thickness uniformly 2 feet, and its weight 3600
pounds. Let the point of application of P be 4 feet above
the base. Compute the value of P to cause rotation, (¢) when
the angle g is 0°; (#) when the angle 8 is 30°.

ARTICLE 8. NORMAL, PRESSURE AGAINST WALLS.

In Figure 8 is shown a wall which sustains the lateral press-
ure of a bank of earth. The back of the wall B4 is inclined to
the horizontal at the angle 6, an? the surface of the earth AM

M

T‘/‘ —
-t i v

-

Fic. 8,

is inclined at the angle 8. The line B represents the natural
slope of the earth with the inclination ¢. It is required to
find the lateral pressure of the earth, supposing that its direc-
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tion is normal to the back of the wall, or that, in Figure 7,
the angle 2 is zero.

Draw BM making any angle # with the horizontal, and
consider that the prism 4B in attempting to slide down the
plane BM exerts a pressure upon AB. Let W be the weight
of this prism, represented by the line OW, and let it be re-
solved into a component P, acting normal to the back of the
wall, and a component R acting opposite to the direction of
the reaction of the earth below BM. Let ON be normal to
the plane BM, then the angle NOR will be equal to the
angle of friction of earth upon earth, if the prism ABM is just
on the point of sliding down BM; (for, as ON and NR are
components of OR the triangle gives VR = ON.tan NOR,
but from the law of friction VR = f. ON; hence f =tan ¢ =
tan NOR, and accordingly NOR = ¢.)

Now in the triangle WOR the side OW represents the
weight W, and the side WR the resultant normal pressure 7,.
Hence 4 {.“

L)
sin WOR
A= Wsin WRO* &

But the angle WORis x — ¢ and the angle WROis 0 + ¢ — .

* Let % be the vertical height of the wall, and w the weight of a
cubic unit of earth; then the value of W for one unit in length
of the wall is

;
o . _ ,_sin (§ — d) sin (6 — )"
W=3%w.BA .BM.sin ABM = }wk sin® 0 sin (z — ) \

e hON=X (4oles flerf) acst s

R =P (MW@Z j
& ORI oW —NOR = | < fp
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/ The above value of P, then can be written .
/
P, = jwh sin (6 — 9) sin (6 — #) sin (r — @)

sin® @ sin (x — d) sin (0+ ¢ — x)’ X (20)

which expresses the normal pressure due to any prism whose
plane BM makes an angle x with the horizontal. This ¢xpres-
sion becomes o, both when x =46 and when x = ¢, and
between those limits it has a maximum value which is to be
taken as the pressure against the wall, since such can occur if
the earth is about to slide down the corresponding plane.

In order to find the value of x which renders (20) a
maximum it is best to write it in the form

__. A4y —a
A= 00+’ e

in which y = cot (¢ — x), @ = cot (6 — @), & = cot (8 — 9),
c=cot ¢, A=4wh'sin (0 — @) and B =sin* fsin¢p. Dit-
ferentiating this with respect to y and putting the first deriva-
tive equal to zero, there is found

. y=a+ vVa—8@+to, - - - - (22
and inserting this in (21) there results for the maximum
P = 4
Y B(VaFct+va—35)"

Thus P, is expressed in terms of the data w, 4.6, ¢ and ¢, but
to obtain a more convenient form it is well to replace the

N\ RA =
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cotangents by their equivalents in terms of sines. Then after
reduction it becomes
(/xm,% fm, 87 ¢ cand < ¢

\P whk' sin® (0 — @) .. (23)
' s sin ¢. sin (¢ — §) "
sin 0( ! +\/ sin 6 sin (8 — 9)

which is the formula for the lateral normal pressure of a bank
of earth against the back of a retaining wall.

This formula is valid for any value of # greater than ¢, and
for any value of ¢ less than ¢. By its discussion simpler
formulas for special cases can be deduced.

The greatest value of ¢ will be that of the natural slope ¢.
For this case formula (23) becomes

s sin’ (0 — @)
P, = 3wk sm0,....(.'?1)
which is the greatest normal thrust that can be caused by a
sloping bank, if the wall be vertical 6 = 90° and this reduces
to the simple form P, = 4wk’ cos’ ¢. VAR I )

The most common case is that where the surface AN is
horizontal ; for this 6 = 0 and (23) becomes

e Sin'H(6 — @) ‘
A=iw S OsRe+® (25)




ART. ] INCLINED PRESSURE AGAINST WALLS. Y

which is the normal pressure of a level bank of earth against
an inclined wall. If in this § = 90°, there results the formula
for the pressure of a level bank against a vertical wall,

P, = jwi tan® (45 — 4¢), (-9

*

which is the well-known expression first deduced by CouLoMB
in 1773.

Problem 8. Prove from (22) that, when & = o, the plane
BM bisects the angle between BA and BC. Prove it also by
making 6 = o in (21), and then equating the first derivative to
zero, thus deducing x = (60 + ¢).

ARTICLE 9. INCLINED PRESSURE AGAINST WALLS.

In Figure g is shown a wall which sustains the lateral pres-
sure of a bank of earth, the back of the wall being inclined to
the horizontal at an angle 6, and its vertical height being 4.
The upper surface of the earth has an inclination ¢ to the
horizontal, which is not greater than the natural slope ¢. It
is required to find the lateral pressure of the earth supposing

that its direction makes-an angle ¢ with the normal to the -

back of the wall.

Draw BM making any angle x with the horizontal, and
‘consider that the prism BAM in attempting to slide down
this plane is sustained by the reactions of the wall and of the
earth below BM. Let OW represent the weight of this prism,
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and let it be resolved into components OF, and OR opposite
in direction to these reactions. Let OL be normal to the
back of the wall,and ON be normal to the plane B4, Then
if motion is just about to occur, the angle VOR is equal to the

angle of friction ¢ of earth upon earth, and LOP, is equal to

the angle of friction ¢ of earth upon masonry. Although ¢’
\I
{

-

is perhaps in general greater than ¢, it is customary to take it
as the same, thus erring on the side of safety; accordingly
LOP, = ¢. ’

Let W be the total weight of the earth in the prism BAM,
and w its weight per cubic foot. Let P, represent the inclined
resultant pressure against the wall. In the triangle ROW, the
angle ROWisx — ¢,and ORWis 6 4 2¢p — x; hence

_ sin (£ — @)
A= Wsin(ﬂ(—{— 2¢ — 2)°

L A R (SR

- 0'.(' A
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The weight W for one unit in length of the wall is zv X area -

BAM x 1. The area of BAM equals $BA.BM . sin ABM;
the side BA is £ + sin 0, the angle ABM is § — x, and

sin BAM _ k.sin (6 — 9)

BM = B4 sin AMB "~ sin 0. sin(x — 6)°

The value of W is thus expressed in terms of x and the
given data, and P, becomes

sin (§ — 8) sin (f — z)sin ( — @)

Bi=iwk sin* @ sin (¥ — ) sin (0 +2¢ — )" ° (27)

which gives the pressure due to any prism BAM.

The greatest possible value of 7, is to be regarded as the
actual value of the inclined pressure. By proceeding as in
Article 8 it can be shown that this obtains when

cot (§ — z) = cot (6 — ¢)
+ #/Tcot (f— @) — cot (0 — 0)] [cot (6 — @)+ cot 2¢]» (28)

and that the maximum value is

3wk sin* (60 — @)
sin 2¢ . sin (¢ — 9)
*sin (6 + @) sin (6 — 6)

P._

= » (29)
sin® 0 sin (¢ 4 ¢)( 1+

which is the general formula for the so-called inclined pressure
and from which the results for all special cases can be deduced.

" -
N ]

N
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The greatest slope 6 will be the natural slope ¢. For this
case the formula reduces to

_ fwhk® sin*(6 — ¢)
A= e sin@F@y ~ " " " ° (30)

‘which is the pressure due to a ba}k of maximum slope against

an inclined wall. If the back of the wall be vertical, § = go°
and the expression takes the simple form P, = 3w/’ cos ¢.

‘ The most common case is that where the surface AN is

-horizontal ; for this 6 = 0 and (29) becomes

o Jwh* sin* (06— @)
. sin2¢sing \”  (31)
sin’ @sin(6 4+ ¢)< 14+ S (0 By b )

which is the inclined pressure of a level bank of earth against

an inclined wall. If in this § = 90°, there results the formula

for a level bank of earth retained by a vertical wall.

. cos ¢
P,:}wkmm?),, e e o. (32) -

which is the well-known expression deduced by PONCELET.

Problem 9. In formula (27) make 6 = go° and ¢ = 0°.
Then find the value of » which renders it a maximum, and
deduce the corresponding value of P,.
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]
e \fw 2
ARTICLE 10. GENE FORMULA FOR LATERAL
: PRESSURE.

Let a wall whose back is 4B sustain a bank of earth BAM
as in Figure 9. If the earth be loose, the weakest plane BM/
wil be that along which rupture is about to occur, so that the
angle NOR = ¢, as in the two preceding articles. Let the
resultant lateral pressure be designated by 2, and let its direc-
tion make an angle z with the normal to the wall so that
LOP, = 2. By the same reasoning and methods as before
used, it is found that the expression for the pressure due to
any prism ABM and the value of cot (¢ — x) which renders it
a maximum are the same as given by (27) and (28) if the
single term 2¢ be replaced by ¢ -} 2, and then results

3w/’ sin® (6 — @)

=— sin(¢ + ) sin(¢ — 9)
sin’ fsin (04 3)(1 + \/ sin (6 4 2) sin (6 — 6))

P

= (33)

which is a general formula for the lateral pressure in terms of
the unknown angle 2. If 2 = o, the direction of P is normal
to the back of the wall and (33) reduces to (23). If 2 = ¢, the
pressure is inclined to the normal at the angle of friction and
(33) reduces to (28).

From the above formula a number of theories of earth
pressure can be deduced by making different assumptions with
regard to the angle 2. For instance, it seems to some authors
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a reasonable theory which makes the pressure upon a vertical
wall parallel to the earth surface AM; for this case § = go°,
and 5 = 90° + & — 0, and inserting these in (33) it reduces to

e Jwhk' cos’ ¢
P = : : .
cos & ( 1+ sin (¢ - J) sin (¢ — 6)) (34)

cos 6

which is RANKINE'S formula for the lateral pressure against a
vertical wall. In like manner several other formulas, more or
less reasonable, can be established. But probably everything
necessary for the practical engineer is given in Articles 8 and g.

Problem 10. Deduce formulas for the earth pressure
under the supposition that its direction is horizontal,

ARTICLE 11. COMPUTATION OF PRESSURES.

In computing the lateral pressure of earth from the above
formulas it is customary to take 4 in feet and w in pounds per
cubic foot ; then the value of P will be in pounds per running
foot of the wall. On account of the uncertainty in the data
the trigonometric functions need be taken only to three or
four decimal places, or, if logarithms be used, as will be found
most convenient, a four-place table will be amply sufficient.
The values of the pressures for several cases will now be com-
pared, the walls all being 18 feet in vertical height, the earth
weighing 100 pounds per cubic foot and having a natural slope
¢ = 34 degrees. Here the value of 4w/’ is 16 200 pounds.
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For a level bank of earth and a wall whose back slopes
backward with the inclination 6 = 80°, formulas (25) and (31)
give the pressures

-

P, = 3570, P, = 2 590 pounds.

For a level bank of earth and the back of the wall vertical, for-
mulas (26) and (32) give

P, = 4580, P, = 4 210 pounds.

For a level bank of earth and the back of the wall sloping
forward so that 8 = 100°, formulas (25) and (31) give

P, = 5 760, P, = 5 670 pounds.

Here it must be remembered that the direction of 1? is
normal to the wall, while the direction of 7, makes an angle of
34° with the normal to the wall.

For the same walls sustaining earth whose upper surface
has the slope 6 = 10 degrees, the following values are found
from formulas (23) and (29):

For 6 = 80°, P, = 3920, P, = 3 400 pounds.
For 6 = g0°, P, = 5080, P, = 4 960 pounds.
For 6 = 100°, P, = 6 469, P, = 6 480 pounds.

For the same walls sustaining earth whose upper surface
has the angle of repose & = 34°, formulas (24) and (30) give:

Forf0= 80°, P = 8780, P,= 9460 pounds.
For§ = 9o°, P = 11130, P, = 13430 pounds.
For § = 100°, P,= 14160, P, = 19 380 pounds.



.
.

38 THE LATERAL PRESSURE OF EARTH. [Cuar. Il

A comparison of the above values shows that the pressure
increases both with 6 and 6. For a level bank of earth the
values of A are less than those of 7, but for a large value of
¢ the values of P, become greater than those of P, Whether
the true thrust against the wall is 2, or A,, or some inter-
mediate value, cannot be determined theoretically, and hence
the best procedure for the engineer will be to use those
values which are the most unfavorable to stability.

For the case of water ¢ =0 and 6§ =0, and all the for-
mulas for pressures reduce to

P: Wh’ -:-‘ Sin 0, . . . . . . (35)

in which w is the weight of a cubic foot of water, or 62}
pounds. The pressure of water against a wall 18 feet in verti-
cal height will hence be 10280 pounds when 6 = 8o degrees,
10 125 pounds when € = go degrees, and 10 280 pounds when
6 = 100 degrees, its direction being always normal to the back
of the wall. '

Problem 11. Compute the pressures against a wall g feet
in vertical height for earth weighing 100 pounds per cubic foot
and having an angle of repose ¢ = 34 degrees, (@) for the case
when & = 10 degrees and 6 = 80 degrees ; (§) for the case when
0 = 20 degrees and ¢ = 80 degrees.
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ARTICLE 12. THE CENTRE OF PRESSURE.

For all the above cases the formulas for the resultant
lateral pressure of the earth may be written

P=3wh. bk

in which £ is a function of the angles 9, 6, and ¢. If y repre-
sent any vertical depth measured downward from the top, the
resultant pressure on the part of the wall corresponding to
this depth is '

P=3iwy' .k

which shows that the resultant pressure varies as the square of
the height of the wall. The pressure per square unit at any
point on the wall varies, however, directly as the height, for
if  be increased by dy the increase in P is 4P or wkydy, and
the pressure per square unit over the area 1 X dy is

aP
27 = w,éy.

The laws governing the distribution of earth pressures are
hence the same as for water, the unit-pressure at any point
varying as the depth, and the total pressure as the square of
the depth. - Lot 2 wwasao
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The point where the resultant pressure P is applied to the
wall is called the centre of pressure, and this is at a vertical
distance from the top of the wall equal to two-thirds its height.
This may be proved by Figure 10, which gives a graphical
representation of the pressure against the back of the wall, the
unit-pressures falling into a triangular. shape, since each is
proportional to its distance below the top. The point of

FG. 10.

application of the resultant pressure P hence passes through
the centre of gravity of this triangle and cuts the back at
two-thirds its length from the top. ¢

For another proof the principle of moments may be used.
Let y be any vertical distance from the top, and y’the vertical
distance from the top to the centre of pressure. Then taking
the top of the back of the wall as the origin of moments,

P.y = 3dP.y.

Inserting in this the values of P and 4P given above and
Mtegrating betwen the limits y = o0 and ¥ = 4, there results

-

Y= ... (36)
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that is, the centre of pressure is at a vertical distance 4% below
the top of the wall, or at % above the base.

Problem 12. Let a level bank of earth have a load of ¢
pounds per square foot upon the surface 44. Show that the
resultant normal pressure due to both bank and load is

. . . sin’ §(0 — @)
Px - (‘&w;l +q"’sin 6 . sin® %(0_'_ ¢)’ L (37)

and that the depth of the centre of pressure below the top of
the wall is

7 = 3wh+6g
Find the position of the centre of pressure when % = 18 feet,
w = 100 pounds per cubic foot, and ¢ = 300 pounds per
square foot.

, 2wk |
T30, ... (9
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CHAPTER IIIL
INVESTIGATION OF RETAINING WALLS.

ARTICLE 13. WEIGHT AND FRICTION OF STONE.

The lateral pressure of the earth against a retaining wall
tends to cause failure in.two ways, namely, by sliding and by
rotation. This tendency is resisted by the friction between
the stones and by the weight of the wall. The following table
gives average values of the unit-weights and the coefficients of
friction for different.kinds of masonry:

Weight.
Coefficient An%le
Kind of Masonry. of K
Friction. Friction, Pounds per Kilos per

cubic foot. | cubic meter.

Limestone and Granite :

Ashlar Masonry....... . 0.6 31° 165 2640

Large Mortar Rubble.... 150 2400

Small Dry Rubble...... 125 2000
Sandstone :

Ashlar Masonry ........ 0.6 31° 150 2400

Large Mortar Rubble.... : 130 2100

Small Dry Rubble....... 110 1760
Coarse Brickwork......... 0.65 33° 100 1600
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In the investigation of masonry walls the influence of the
mortar is generally neglected, on account of its uncertain
character and because the error is then on the side of safety.
The above coefficients of friction are hence stated for dry
masonry, and will probably be somewhat increased when mor-
tar is used. For rubble masonry the coefficient of friction is
often somewhat higher than for ashlar; but its value is so un-
certain that no figure is given in the table.

The coefficient of friction of stone upon stone is deter-
mined by placing two plane surfaces together and then
gradually inclining the surface of contact until the upper
stone begins to slide upon the lower. The angle made by the
plane with the horizontal is the angle of friction, and its tan-
gent is the coefficient of friction. as shown by equation (2).

The word “batter” means the inclination of the face or
back of a wall, measured by the ratio of its horizontal to its
vertical projection, or in inches of horizontal projection per
foot of vertical height. Let 8 be the angle of inclination of
the back of the wall to the horizontal, as in Figure 8. Then
cot # is the batter of the back, and the values of 6, sin#,
and cos @ for different batters are given in the following table.
If the back of the wall leans backward, 6 is less than go de-
grees, and cos 6 and cot 6 are positive ; if it leans forward,
6 is greater than go degrees and cos ¢ and cot 6§ are negative ;
sin @ is positive in both cases. These values will be useful
in many computations.
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Praches” | Haicward Arge? sing, | coss | Batter
per foot. Batter, Forward Batter. cot 8.
o 9o° 00’ 9o° 00’ 1.0000 0.0000 0.0000
$ 87 37 92 23 0.9991 0.0461 0.0417
b 85 14 94 46 0.9965 0.c831 0.0833
14 82 52 97 08 0.9923 0.1239 0.1250
2 80 32 99 28 0.9864 0.1845 0.1667
24 78 14 101 46 0.9790 0.2039 0.2083
3 75 58 104 02 0.9702 0.2425 0.2500
3% 73 45 106 15 0.9600 | 0.2797 0.2916
4 71 34 108 26 0.9487 0.3162 0.3333
5 67 29 112 31 0.9239 0.3828 0.4144
6 63 26 116 34 0.8944 0.4472 0.5000

Problem 13. Compute the values of sin#, cos6, tan 6, and
cot 6 for a batter of 43 inches per foot ; ‘also for a batter of 53
inches per foot.

ARTICLE 14. GENERAL CONDITIONS REGARDING SLIDING.

A retaining wall may fail by sliding on its base or on some
joint above the base. When a wall is just on the point of
failure it is in the state of equilibrium, that is, the weight of the
wall just balances the pressure and reaction of the earth. The
proper state of a wall is, of course, stability ; and failure brings
disgrace upon its designer.

The degree of stability of a wall against sliding may be in-
dicated by a number called the factor of security which ranges
in value from unity to infinity. This factor will be designated
by 7; when # = 1 equilibrium exists and the wall will fail 3
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when # > 1 the wall is stable and its degree of stability varies
with #; when # = oo the highest possible state of stability
exists.

The analytical conditions of equilibrium and stability for
the case of sliding are the following. Let Figure 11 represent
two bodies having a plane surface of contact, /V the total force

MG, 1.

normal to that plane, F the total force parallel to it, and f the
coefficient of friction between the surfaces. Then the condi-
tion of equilibrium is, as in (1), ’

F =f1v) . . . . . - . (39)
and the condition of stability is
F<fN or nF=/N,. . . . (40)

in which # is a number greater than unity called the factor of
security. The equation (40) may be used for the discussion of
all cases of sliding, / and V being the sum of the components
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in the directions parallel and normal to the plane of all the
forces exerted by one body on another. If R be the resultant
of all these forces and { be the angle which it makes with the
normal ON the value of F is R sin {, and that of IV is R cos C. .
Inserting this in (40) it becomes

e M

which is another form of the condition of stability against
sliding.

ntan § =

(41)

The graphical conditions of equilibrium and stability for
sliding are simple. In Figure 11 let ON be normal to the
vplane of contact and NVOF be the angle of friction ¢, that
is, the angle whose tangent is £. Let R make an angle { with
the normal ON, then equilibrium obtains when § equals ¢,
and stability occurs if { is less than ¢. Draw NF parallel to
the plane of contact, and let 7" be the point where it inter-
sects the line of direction of K. The position of 7T indicates
the degree of stability against sliding ; if the distances N7~
and NVF be determined, the factor of security is the ratio of
the latter to the former, or '

NF .
= V7 B P )

for, it is seen that this formula is the same as (41), VF being £,
and N7 being tan (if the distance ON be unity, and their
ratio being the same as these tangents whatever be the length
of ON.
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Problem 14. A plane surface is inclined at an angle of 40°
to the horizontal, and on it is a block weighing 125 pounds,
against which, to prevent it from sliding, a horizontal force
of 300 pounds acts. If the angle of friction of the block upon
the plane is 18°, compute the factor of security against sliding.

ARTICLE 15. GRAPHICAL DISCUSSION OF SLIDING.

Let Figure 12 represent the section of a wall whose dimen-
sions and weight are given. Let BC be any joint extending
through the wall, and let P be the lateral pressure of the earth
above B. It is required to investigate the security of the wall
against sliding. '

The pressure Pis applied on the back of the wall at one
third of its height above B, and its direction depends on the
hypothesis adopted in its computation ; if Article 8 is used, it is
normal to the back of the wall; if Article g, it is inclined at an
angle equal to the angle of natural slope of the earth.

A drawing of the given cross-section is made to scale, and
its centre of gravity found: this is G in the figure. The area
of this cross-section is then determined and called 4; if this
be multiplied by 7, the weight of a cubic unit of masonry,
the product is ¥, the weight of a wall one unit in length, or
V = vA.

Through G a vertical line is drawn, and the direction of P
is produced to intersect this in O. Lay off OP to scale equal
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to the earth pressure P, and OV equal to the weight of the
wall, V. Complete the parallelogram of forces OPRV, thus
finding OR as the resultant of Pand V.

Produce OR to meet the joint BCin 7. Through O draw
ON normal to BC, and then draw OF, making the angle NOF
equal to the angle of friction of stone upon stone. This com-
pletes the graphical work.

4

If the point T falls between &V and F, the wall will not fail
by sliding, and its stability is the greater the nearer T is to V.
If T coincides with F, the wall is just on the point of sliding
along the joint BC, and much more so is this the case if 7"
falls beyond F. As explained in the last Article, a numerical
expression of the degree of stability can be obtained by divid-
ing the distance VF by NT, or if » be the factor of security
against sliding,

NF

ﬂ=j—v—-7..
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This becomes unity when NT equals NVF, and infinity when
NT is zero, the first value indicating the failure of the wall
and the second the greatest possible degree of stability against
sliding., It is recommended that for first-class work 7 should
not be less than 3.0, and fortunately it is always easy in build-
ing a wall to make its value greater than this by properly in-
clining the joints (Article 23).

The above method applies either to the base of the wall or
to any joint that extends through it, whether the joint be hori-
zontal or inclined. Owing to the uncertainty regarding the
weight and angle of repose of the earth, the direction of A, and
the angle of friction of the stone, it will not always be possible
to obtain values of the factor of security which are perfectly
satisfactory. Still the investigation will generally determine
if danger exists, and of course unfavorable values of the data
should be used in the analysis. If the wall have no joints ex-
tending through it, an analysis for sliding need not be made.

Problem 14. Prove that the centre of gravity of a quadri-
lateral adcd can be found as follows: Draw the diagonal ac and
bisect it in ¢; join e, and take ¢f equal to }ée; through f
draw fk parallel to éd. Draw the other dnagonal bd and bisect
it in g, join grand take g% equal to iag ; through g draw g4
parallel to ac. The centre of gravity is at £, the intersection
of f% and gk.



50 INVESTIGATION OF RETAINING WALLS. [CHAp. II1.

ARTICLE 16. ANALYTICAL DISCUSSION OF SLIDING. °

Let ABCD represent the cross-section of a wall whose
dimensions and weight are given, 6 being the inclination of
its back to the horizontal. Let BC be any joint extending
through the wall, and.  its inclination to the horizontal. Let
P be the lateral pressure of the earth above this joint, and 2
the angle between its direction and the normal to the wall;

if P be the pressure computed by the formulas in Article 8, the
value of z is simply zero; if by those in Article g, its value
is the angle of repose of the earth; if 2 be assumed at any
intermediate value, P is computed from (33). Let 7 be the
weight of the wall. It is required to investigate the degree of
stability against sliding.

Let Fand &V be the sum of the components of P and V'
respectively parallel and normal to the joint, and / the coeffi-
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- cient of friction. Then if # be the factor of security, nF = fN,
and
N
e N N X))

Now by resolving P and V parallel and normal to the joint

there is found F. PeasZ -loi o Te. soadz oo
.,\«(44(-541) - A

— . _ . € -ev faut | f,.)n
1{;7‘ = i’?gs(grt ‘}’toz)(ﬂ +V:13_¢2); } ’ S COREETEEE
In wheen P at e 2
and if these be inserted in (43), the value of # is expressed in
terms of the given data.” The entire analytical discussion of
the sliding of a wall along a joint consists in computing # from
these formulas. If 7z is greater than 3, the security against

e st

sliding is ample; if # is less than 3, the wall does not have
proper security for firstclass work; if # =1, failure will
occur.

For example, consider a sandstone wall 18 feet high, 3 feet
wide at the top and 6 feet wide at the base, the back being
vertical. The weight of the masonry is taken at 140 pounds
per cubic foot, and the coefficient of friction on the horizontal
joint at the base is 0.5. This wall supports a level bank of
earth weighing 100 pounds per cubic foot and-having an angle
of natural slope of 34 degrees. It is required to find its factor |
of security against sliding.

First, let the pressure P and its direction be taken from
Article 8. Here 2 =18 feet, w = 100, 0 =g0°, ¢ = 34°,
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a4\
6 =0°% and 2 =0°. Then by formula (26) there is computed

P= 458o;>ounds. The weigut of the wall is
V=140 X 18 X 43 = 11340.5ounds.

Now since &« = 0°, F = 4580 and N = i134o, hence the factor
of security is

5 11340 X 05

4580 = 1.2,

which indicates a very low degree of stability.

Secondly, let the pressure P and its direction be taken from
Articleg. Here 2 = 34° and using formula (32) there is found
P = 4210 pounds. V'is 11340 pounds as before. From (44),

F = 4210 sin (90° + 34°) = 3490,
N = 11340 — 4210 cos (90° + 34°) = 13690,

and then from (43) there results the factor

_ 05 X 13600 _

(2
3490

1.9,

which indicates a degree of stability too low for first-class
work.

Unfortunate indeed it is that the theory of earth pressure
is not sufficiently explicit to determine the exact value and




ART. 16.] ANALYTICAL DISCUSSION OF SLIDING. 53

direction of 2. He who believes the theory of Article 8 must
conclude that this wall is in a very dangerous condition and
almost about to slide; he who defends the theory of Article 9
might conclude that it is not in great danger, and that its
degree of security is fair. It is well, however, not to forget
that the given data are liable to variations fully as serious as
the defects in the theory. Imagine a heavy rainfall to increase
w and decrease ¢; this causes P to become larger, and as 7
usually would be smaller in wet weather, it is seen that the
degree of stability of the wall would be greatly diminished.
If the factor of security be computed for both theories as is
done above, and the variation in the data be regarded, a fair
conclusion can generally be made regarding the security of the
wall. The effect of the variable data, however, is often so
great that a ripe judgment, based upon experience, may be
more reliable than computations.

Problem 16. Owing to a heavy rainfall the earth behind
the above wall is increased in weight to 120 pounds per cubic
foot and the angle of natural slope is decreased to 32 degrees,
while the coefficient of friction at the base of the wall becomes -
0.45. Compute the factor of security of the wall against
sliding, (@) using the theory of Article 8, and (§) using that of
Atticle 9. '

. UNIVERSITY
N\QCALIFORNIA
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ARTICLE 17. GENERAL CONDITIONS REGARDING ROTATION.

Let Figure 14 represent two bodies having the plane of
contact BC. Let M be the middle point of BC. Let R be
the resultant of all the forces which each body exerts on the
other, and let 7 be its point of application on BC. It is
clear that rotation or overturning will instantly occur if T falls
without BC, that equilibrium obtains if 7" coincides with C,

A—— D
R

I'_B ﬁ\i"\cj

FON

FiG. 14.

and that stability, more or less secure, will result if 7 falls
within BC. The nearer the point of application 7 is to the
middle of the base M the greater is the degree of stablhty
against rotation.

To investigate the degree of security of a given wall
against rotation it is only necessary to find the distance M7
either graphically or analytically. Let z be the factor of
security of the wall, then

n = m,, . . . . . . . (45)
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If MT equals MC, the value of # is unity and failure by rota.
tion is about to occur; if M7 is less than J/C, the value of 2
is greater than unity and the wall is more or less stable; if
MT is zero, n is infinity and the wall has the greatest possible
degree of stability.

The factor of security # should not have a value less than
three for proper stability. To demonstrate this, consider the
distribution of pressures in a joint as represented in Figure 15.

FiG. 13,

In the first diagram the resultant pressure R is applied at the
middle of BC; here the pressure will be uniformly distributed
over the joint, and the unit-stress S, at B will be equal to the
unit-stress Sat . In the second diagram the resultant R is
‘applied so that M/ T has a small value; then the pressure is
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not uniformly distributed over the joint, but the unit-stress
S, at B becomes smaller than in the first diagram, while the
unit-stress S at C becomes greater, and the unit-stresses be-
tween B and C are taken as varying proportionally. In the
third diagram the distance /7 is such that the unit-stress at
B becomes zero; this occurs when C7 is one-third of CB
(since the line of direction of R passes through the centre
of gravity of the stress triangle) or when MT is one-third of
MC. In the last diagram M T has become greater than one-
third of MC, so that the pressure is only distributed over
CB’ and the portion BB’ is either brought into tension or the
joint opens. As masonry joints cannot take tension this last
is a dangerous condition. Therefore ‘the ratio of MC to M7,
or. the factor of security, should not be less than 3.0.

If the joint BC be divided into three equal parts, so that
BD = DE = EC, the portion DE is called the “ middle third,”
and the above requirement is otherwise expressed by saying
that for proper security against rotation the resultant of all the
forces above any joint must be within the middle third of that
joint.

Problem 17. In Figure 15 let BC be horizontal, and let
ABCD be a cubical block weighing 625 pounds. Compute the
factor of security against rotation when a horizontal force of
250 pounds is applied at 4.
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ARTICLE 18. GRAPHICAL DISCUSSION OF ROTATION.

Let Figure 12 represent the cross-section of a wall whose
dimensions and weight are given. Let BC be any joint ex-
tending through the wall, and let P be the lateral pressure of
the earth above B. It is required to investigate the security
of the wall against rotation. :

The pressure P is applied on the back of the wall at one-
third of its height above B (Article 12), and its direction is
either normal to the wall (Article 8), inclined to the normal at
the angle of natural slope of the earth (Article g), or it has a
direction between these two limits (Article 10).

A drawing of the given cross-section is made to scale, and
its centre of gravity found; thisis at G. The area of this cross-
section is next determined and called 4; then the weight of
the wall for one unit in length is /= v4, where v is the weight
of the masonry per cubic unit.

_ Through G draw a vertical line and produce P to intersect
itin 0. Lay off OP to scale equal to the earth pressure 7,
and OV equal to the weight 7. Complete the parallelogram
of forces OPRV, thus finding OR as the resultant of Zand V.
Produce OR to meet the joint BC in 7. Mark M as the
middle point of BC, and measure M7 and MC. This com-
pletes the graphical work.
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If 7 falls at C, the wall is on the point of rotation; and if
at M, it has the highest possible degree of stability. If BC
be divided into three equal parts and 7 is found within the
middle one, the wall has proper security against rotation. If
it falls without the middle third, it is deficient in security
(Article 17). Dividing MC by MT the factor of security is

found, or
; MC !L’ <] . 3 ,
n= a7 O { %‘w

If this is unity or less, the wall fails; if it be smaller than 3, the
wall is stable but not secure; if it be greater than 3, the degree
of security is sufficient as far as rotation alone is concerned ; if
it be infinity, nothing more can be desired.

By this method but one construction is needed for the
investigation of a wall against both sliding and rotation. It
will usually be found for ordinary cases that the factor of
security against rotation is least for the base of the wall or for
the lowest joint. For the general discussion the base of the
wall is drawn inclined in Figure 12, but in the actual drawing
it will be best to take it as horizontal.

Problem 18. Let a wall with vertical back support a level
bank of sand weighing 100 pounds per cubic foot and having
an angle of repose of 34 degrees. Let the top of the wall be
2 feet thick, its base 7.57 feet, its vertical height 20 feet, and
its weight per cubic foot 165 pounds. Determine the factors
of stability against sliding and rotation for the horizontal
base, taking the earth pressure from Article 8:
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ARTICLE 19. ANALYTICAL DISCUSSION OF ROTATION.

Let ABCD be a cross-section of a wall with vertical back,
AB being 24 feet, the top 4D being 3 feet and the base BC
being 8 feet. Let the weight per cubic foot of the masonry

Ar—

=

Al

|

M
B— 5

FiG. 16.
Y
be 150 pounds, and let it be required to determine the factor

of security against rotation for a horizontal earth pressure P
of ﬁooo pounds.

Let T be the point where the resultant pierces the base,
and let C7 be represented by #; then the factor of security is

MO _ _4
“MT  34—2
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in which 7 is to be determined. To do this, drop Dd perpen-
dicular to BC, dividing the crosssection into a rectangle of
weight V, and a triangle of weight ¥,. The value of v, is
150 X 3 X 24 or 10,800 pounds, and its horizontal distance
from 7 is (64 — ?) feet. The value of Vis 150 X 5 X 12 or
gooo pounds, and its horizontal distance from 7'is (§ X 5 — 7)
feet. The lever arm of P with reference to 7 is 8 feet, and as
R passes through 7 its lever arm is 0. Then the equation of
moments is

" 8000 X 8 = 10800(63 — £+ 9000(3 — 2,

from which # is found to be 1.83 feet, and then the factor of
security against rotation is

-4 _
=T 19

which is not sufficient for proper stability.

A general discussion applicable to any trapezoidal cross-
section will now be given. Let % be the vertical height of the
wall, @ the thickness of the top AD, 4 the thickness of its base
BC, and v its weight per cubic foot. Let 6 be the angle
which the back of the wall makes with the horizontal,and 2z the
angle which the earth pressure P makes with the normal to
the back of the wall. The point of application of P is at a
vertical height of § 4 aboye B.

Let V be the weight of the wall acting through the centre
of gravity of the cross-section, and let S be the point where its
direction cuts the base. Let R be the resultant of 2 and V'
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acting at some point 7" on the base. Let s represent the dis-
tance BS,, and ¢ the distance C7. Let the point 7 be taken
as a centre of moments, and let the lever-arm of 2 with

reference to it bc p. The lever-arm of V' is —s—¢ and
that of R is zero. Then the equation of moments is

Pr=Vb—s—28 . .. ... (46

which is the fundamental formula for the investigation of re-

taining walls. This may be written L v
e t

Pp=Vb—-Vs—Vt, . . . . . (47

which is sometimes a more convenient form for use, since %
and Vs can be treated like single quantities.

To investigate a wall, the factor of security # is to be de-
termined. From formula (45),

MC 36

n:-—M—]-‘:%T;—;,- o o e o o (48) .: .
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and 7z will be known as soon as ¢ is found. To do this the
value of p is expressed in terms of #, thus:

Cosz

w
}Izsm gt (@ —2fcos(6+2),. . . . . (49)
and this being inserted in (47) there is deduced

COSS

Vb—Vs — «}PI: — Pb cos(0 + 2)
V— Pcos O+ 2)

= (50) r.i"‘x e

In this formula 7 is the weight of one unit in length of the
wall, or, for a trapezoid,

V=3%vka+8, . . . . . . (510 [

ﬁ), ﬁﬂ 1al

A

and Vs is the moment of that weight with respect to the %gkl-
inner edge B of the base. By considering the trapezoid ~
ABCD as the difference between the rectangle 4aCc and the "/.';Tﬁ“/'-: o
two triangles AaB and CcD, this is found, by the help of the

principles of statics, to be

Vs = 3vk(a’ +ab+ & — (2a +8)k cot 6), . (52)
and, dividing by V, the distance s can be determined if it

should be required. To investigate a wall, jormulas (52) and
(51) are first used, then (50), and lastly (45).
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As an example, let the following data be taken: A sand-
stone wall retaining a level bank of earth; ¢ = 34 degrees,
w = 100 pounds per cubic foot, %~ = 18 feet, 2 = 2 feet, =3
feet, 6 = 8o degrees, v = 140 pounds per cubic foot. The
value of P, from Article 8, is 3570 pounds, z being zero. The
weight V is found by (51) to be 8820 pounds. Vs is found by
(52) to be 4405 pounds-feet. These inserted in (50) give
¢ = 1.75 feet, which, being greater than one-third the base,
shows proper stability; and lastly, from (48), the factor of
security is z = 3.3.

It will be interesting to test the same wall by the pressure
theory of Article 9, where, 2 being 34 degrees, P is 2590
pounds. All other data being the same as before, there is
found from (50) the value 7z = 3.23 feet, which is more than
one-half the base, so that 7" in Figure 17 lies between M and
B, and the tendency to rotation about B is greater than that
about C. ‘

Problem 19. Compute the factor of security against rota
tion for the data given in Problem 18.

ARTICLE 20. COMPRESSIVE STRESSES ON THE MASONRY.

As a general rule, the working compressive stress upon the
base of masonry walls should not exceed 150 pounds per
square inch in first-class work. A tower 150 feet in height
will produce this pressure on its base if the masonry weighs
144 pounds per cubic foot.
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. The total normal pressure /V upon the horizontal base of a
retaining wall will be given by (44), making & = 0°, or

N= V'—Pcos(0+z),\/- e o o« (53)

in which P is the earth-pressure acting at an angle z with the
normal to the back of the wall, ¥ the weight of the wall, and ¢
the angle which its back makes with the horizontal. If P is
computed by Article 8, the angle z is zero; if by Article g, itsff)
value is ¢, the angle of repose of the earth. For any ordinary
case cos (64 2) is a small fraction, and in most cases it is
a sufficient practical approximation to regard &V as equal to V.

The compressive stresses upon the base BC (Figure 17) will
be regarded as caused by the vertical pressure /V alone. N is
evidently the vertical component of the resultant R. The
horizontal component of R produces shearing stresses along

{ the base which are supposed not to increase the compressive
! stresses. The distribution of the compression over the base

will then be similar to that shown in the diagrams of Figure
15, and will depend upon the position of the point in which R
cuts the base. :

If the resultant cuts the base at its middle point (as in the
first diagram of Figure 15), the compression due to &V is uni-
form over the area & X I square feet, and

S=% oo ()

is the compressive stress in pounds per square foot.
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If the resultant is applied at the limit of the middle third

(as in the third diagram of Figure 15), the unit-stress at the
edge B is zero, that at the middle is the average value given
by (54), and the greatest stress at the toe C is double this aver-
age value, or

S=2]%,. e e e e (55)
If the resultant is_applied without the middle third at a
distance ¢ from the edge C (as in the last diagram of Figure
15), the compression is distributed only over the distance 3¢,
so that T

N.
S=2§o . o . e o o o (56)

gives the stress in pounds per square foot.

The case where R cuts the base within the middle third
at a distance # from C (as in the second diagram of Figure 15)
remains to be considered. Let S be the greatest unit-stress at
G, and S, be the least unit-stress at B. 'Then the unit-stress at
the middle of the base is equal to the average unit-stress, or

v

S+S g
2 6’

and as IV is applied opposite the centre of gravity of the
stress-trapezoid, the value of # is

Q\
S 28, O C

‘=7%rs

W™

(@

| @
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Now eliminating S, from these two equations, there result
V sy ik Laks fofg..

2N ¢
®;.. =7-(2—3Z), s (57)
Sz afY
which is the greatest unit-stress, namely, that at the toe C. Ef i
As N is in pounds for one foot in length of wall, and & is in ~ A
feet, these formdlas give compressive stresses in pounds per
square foot, and dividing by 144 the values in pounds per
square inch are found.

";Y\

——

| For example, take the wall of the last article, where 2= 18
feet, a = 2 feet, & = 5 feet, 0 = 80 degrees, 2 = 0°, P = 3570
pounds, V' = 8820 pounds, and 7= 1.75 feet. In (44) the
value of @ is 0°, and NV is found to be 8665 pounds. Then
from (57) the greatest compression is 22.9 pounds per square
inch, which is a low value even for inferior work.

! For ordinary walls a sufficiently exact computation of the
| unit-stress S may be made by taking V for the value of M.
Thus for the above case V' = 8820, and from (57) S = 23.3
pounds per square inch. When 2 =0° and a = 0°, formula
(44) gives N= V — P cos 6, which differs but little from
N = V when 6 is near go°.

If there be no pressure behind a wall, the point 7" coincides
with S (Figure 17). Then the normal pressure 7 produces the-
greatest unit-stress at B, whose value is given by one of the
formulas,

14 2V s
S=2§}, or 527(2_33)’ . . (58
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according as the distance s is less or greater than one-third
of &.

According to the theory here presented, the vertical com-
ponent of R alone produces compression on the base of a
retaining wall, while the horizontal component is exerted in
producing a shearing stress. This theory has defects; but
upon it has been based the design of structures more impor-
tant than retaining walls.

Problem 20. Let the back of the wall be inclined forward
at a batter of 2 inches per foot, and let the normal pressure of
the earth be P = 22,760 pounds. Let its height be 36 feet,
the top thickness 6 feet, the base thickness 18 feet, and the
weight per cubic foot 150 pounds. Compute the greatest
compressive stress on the base.
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CHAPTER 1V.
DESIGN OF RETAINING WALLS.
ARTICLE 21. DATA AND GENERAL CONSIDERATIONS.

When a retaining wall is to be designed for a particular
location the character of the earth to be supported is known
and also the height of the wall. The data then are: w the
weight per cubic foot of the earth, ¢ its angle of repose, ¢ the
angle of inclination of its surface, and % the height of the
proposed wall.

The thickness of the top of the wall, ¢, is first assumed.
In doing this practical considerations will generally govern
rather than theoretical ones. Theory indicates, as will be
seen in Article 24, that the thinner the top of the wall the
less is the quantity of material required ; but theory supposes
the earth to be homogeneous and takes no cognizance of
the action of frost. Experience, however, teaches that the
freezing earth near the top of the wall exerts a marked lateral
pressure which can only be counteracted by a substantial
thickness. To possess proper stability against the action of
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frost and the weather a wall should not have a top thick-
ness less than two feet. Usually when the height of a wall
varies, as in a railroad cut, the top has the same thickness
throughout. If a wall be only a foot high, its thickness
should not be less than two feet, else in a few years the frost
will push it over. Even in latitudes where frost is rare this
rule is a good one to follow. '

The engineer will next decide upon the batter of the back -
of the wall, or upon the value of 6, the angle between the back
and the horizontal. In doing this he must have regard to the
batter which the front of the wall will have, and to the theory
of economy of material set forth in the following articles, In
construction the back of the wall will be left rough or built in
a series of steps, so that 6 need be taken only to the nearest
degree of the average inclination. '

The pressure of the earth can now be computed by the
proper formula of Chapter II. The theory of Article 8 which
supposes its direction to be normal to the back of the wall is,
in general, to be preferred, because in practice the earth is
tamped against the wall so that there can be little tendency
to slide along it. Article 8 demands a heavier wall than
Article 9, and is thus on the side of safety. In our opinion
Article 8 gives the pressure of earth against a wall which
stands firmly with a high degree of stability, and Article g
gives the pressure of the earth when motion or failure is about
to begin. As walls are designed to stand and not to fail, the
engineer should be careful in erring on the side of safety.
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Therefqre in this chapter the lateral pressure 2 will usually be
taken normal to the back of the wall, so that in all previous
formulas the angle z is zero.

The next procedure is to determine the thickness of the
base so that the wall may have proper security against rota-
tion ; how this is done the following Article will show. If the
front of the wall thus designed does not have the desired

_ batter, a change can be made in the value of 6 and the work

be repeated. Then it will be well to test the work by deter-
mining graphically (Article 18) the factor of security against
rotation. Lastly, the question of sliding must be considered
and proper security against it be provided (Article 23). The
practical points regarding the coping, the frost batter near the
top of the back of the wall, the weep holes, the foundation,
the drainage ditches, the quality of the masonry, and the
details’ of construction will, of course, receive full attention
and be fully set forth in the drawings and specifications.

Problem 21. If # be the angle which the front of the
wall makes with the horizontal, prove that 4 — @ equals
% (cot §—cot f). Find the batter of both back and front
in inches per foot when & = 5 feet, @ = 2 feet, 2 = 18 feet, and
0 = 8o degrees. :
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b
ARTICLE 22. COMPUTATION OF THICKNESS, vt
/,/.!‘1, RS o—uz"ma)
s
The discussion in Article 19 furnishes the following funda-
mental equation for the stability of any wall against rotation:

\ g
Pp=Vb— Vs — Vi

To apply this to the determination of the thickness of the
base of a trapezoidal wall the values of p, VV and Vs are
inserted from (49), (51) and (52) and ¢ is made 44, thus giving
a factor of security of 3.0 against rotation (Article 17). The
value of the angle zis taken as zero because the earth pressure
is computed from Article 8 under that supposition. Then
results

P,(zb cos 6 + _Lﬁ) ivlz(b’ + ab—a’ + bk cot 4 2ak cotb), (59)
SIMOR A C el kg s oo /nmuv.(, u(L((Z)

-

and the solution of this equation with respect to & gives
b=—A+ ¥B+4, . . . . . (60

in which A4 and B have the values

A =%a+ % cot ) — 2_1’_,7;05 0,

= - 6,
B= vsm0+a 2al cot
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from which the base thickness ean be computed for any
given data.

When the valuc of 6is go degrees this takes the simple
form B

— 2P | 5d*
b= 1];a+1/_w_.;.7f R 61)

b
which is the formula for thg b:i{thickness of a wall with

vertical back.
\ .
In these formulas P, is the earth pressure computed by

Article 8, % the vertical height of the wall, 2 the thickness of
its top, 6 the angle at which the back is inclined to the hori-
zontal, v the weight of a cubic foot of masonry, and & is the
thickness of the base which gives the wall a factor of security
of 3.0 against rotation, the resultant R then cutting the base
at the limit of the middle third. For all joints above the base
the factor of security will then be greater than 3.0.

For example, let a wall with vertical back be 20 feet high,
sustaining a level bank of sand which weighs 100 pounds per
cubic foot and has a natural slope of 34 degrees. Let the
masonry be 165 pounds per cubic foot and the top of the wall
be 2 feet in thickness. It is required to find the thickness of
the base BC (Figure 16)?‘.' From formula (26) the pressure of
the earth is 5650 pounds. Then from (61)

b=—x+1/~2_><165_fi)+5=7.57 feet,
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which gives a cross-section whose ‘area is #(2 4 7. 57);0/ or
95.7 square feet.

As asecond example take the same wall except that the
back is inclined backward so that 6 is 80 degrees. Here the
value of P, is found from (25) to be 4410 pounds. Then
a=2, h=20, cost/ = io x736 cotf =+ 0.1763, v =165,
whence from (60) 4 =229, . B=44.2, and b= 4.45 feet,

— .
which gives a cross-section whose area is 64.5 square feet.
‘The advantage of inclining the wall backward is here plainly
indicated, the vertical wall requiring nearly 50 per cent more
material than the inclined one.

- If the wall be of uniform thickness throughout, @ equals 4,
and the solution of (59) gives

b=—C+VC’—|—27P‘,. ... (62)

“in which C has the value

C= 3kcot 6 2P cosb
T2 vk °

If in this 6 be go degrees, it becomes
b=4¥ %) ,

which is the proper thickness for a vertical rectangular wall.
As an illustration take the same bank of sand as in the last ex-
ample ; then for § = 80°, C = 4.81 and the required thickness
is & = 4.0 feet. If, however, # = go degrees, there is found
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= 8.3 feet. Here again the great advantage of inclining

the wall is seen.

Sometimes it may be desirable to assume the inclination 8
of the front of the wall, and then to compute both 4 and a.
For this case Figure 17 gives

a=b—Ilcotf—coth), . . . . (63)
and inserting this in (59) and solving for & there is found
b=—D+VYD'+E . . . . . (64)

in which D and E are determined from

D= icot 4} cot f) — 22 F,
E=_28

prpc 0+ £ (cot® B — cot’ ),

For example, take the same bank of sand as before and let the
back be vertical, or § = g0°, and 2 = 20 feet. Then P, = 5650
pounds per linear foot of wall. Now let the front of the wall
have the batter of 14 inches per foot, or 8 = 82° 52/,and cot 8
=o0.1250 (Article 13). Then D =1.25 and £ =68.5 and
from (64) the base thickness is & = 7.12 feet; lastly from (63)
the top thickness is @ = 5.87 feet.

* The formulas above given can only be used when the earth

pressure P, has a direction normal to the back of the wall.
Those who believe in the theory of earth pressure set forth in
Article g are referred to the latter part of Article 24 for a
formula by which they should compute the thickness.
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Problem 22. A wall weighing 140 pounds per cubic foot
has a vertical back, is 18 feet high, and the horizontal earth
pressure on it is 4580 pounds. Compute the thickness of the
base when the cross-section is rectangular. Compute‘ the
thickness of the base when the cross-section is triangular.
Compare the two sections with respect to amount of material,

ARTICLE 23. éijRIT'v AGAJNST SL}DING.
SO
The base thickness & computed in the last Article provides
proper security against the rotation of the wall under the lat-
eral pressure of the earth. The crosssection thus determined
should now be investigated and full security against sliding be
provided. This can be done in three ways.

First : the masonry ‘may be laid with random courses so
that no through joints will exist. 'If the stones are of suffi-
cient size this checks very effectually all liability to sliding.

Second: all through joints may be inclined backward at an
angle a (Fig. 13) so that the resultant R shall be as nearly nor-
mal to them as possible. This will occur when Fin formula
(44) is zero, or when

P sin (0 + a) = Vsin a,

and this reduces to

cot ¢ =

74
- . . . . 6
Fend <t 6, | (65)
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from which a can be computed for any joint, ¥ being the
weight of the wall above that joint, P, the earth pressure above
. it, and 6 the inclination to the horizontal of the back of the
wall. As 4 is computed for a horizontal base, the value of V'is
a little less than 4v4 (¢ 4 4). For example, take the wall de-
signed above where 6 = g0 degrees, 2 = 20 feet, P, = 5650
pounds, v =165 pounds per cubic foot, 2 = 5.9 feet, and
b= 7.1 feet. Then Vis a little less than 21 450 pounds, say
21000 pounds, and cot @ = 2.7, which gives @ = 20 degrees
nearly. This backward inclination should be made less for
joints above the base, becoming nearly zero for those near the
top of the wall.

Third : for cases where a through horizontal joint cannot
be avoided, as when a wall is built ona platform, the thickness
of the base which will give a required factor of security against
sliding can be computed from (43). To do this make both =z
and @ equal to zero in (44), and substitute the values of # and

N from (43), giving
nP, sin § = AV — P, cos b).
Now in this let the value of 7 be inserted, namely,
V= foi(a+ ),
and the equation be solved for 4, thus:

- ;b=_a+2P,(nsin;v-}|t-fcosH)’ ... (66)
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in which « is the top thickness, % the vertical height, 8 the in-
clination of the back of the wall to the horizontal, 2, the nor-
mal pressure of the earth, v the weight of the masonry per
cubic unit, f the coefficient of friction of the masonry on the |,
through horizontal joint, and 4 the base thickness for a factor
of security of » against sliding, It would be desirable that #
should be about 3.0, but to secure this the wall must be thicker
than is required for rotation. Accordingly, this method of
obtaining security against sliding should be used only when all
other methods are impracticable. Thus in the last article a
vertical rectangular wall is determined to be 8.34 feet thick
when % =20 feet and P, = 5650 pounds, v = 165 pounds per
cubic foot; now, if #=3.0 and f=o0.5, formula (66) gives
a = b=10.3 feet. ‘

Problem 23. Compute the proper inclination of the joints
in the rectangular wall of Problem 22 at distances of 6, 12 and
18 feet from the top.

ARTICLE 24. ECONOMIC PROPORTIONS.

By the help of the formulas of Article 22 the thicknesses
of several trapezoidal walls will now be computed in order to
compare the quantities of masonry required, and thus obtain
knowledge regarding the most economical forms of cross-sec-
tion. "All the walls will be 18 feet in vertical height, and
sustain a level bank of earth whose angle of repose is 34 de-
grees and which weighs 100 pounds per cubic foot. The
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weight of the masonry will be taken as 150 pounds per cubic
foot.

Case I.—Let the back of the wall be inclined forward at a
batter of two inches per foot, or § = 99° 28’ (Fig. 18). From
formula (25) the normal earth pressure 2, is found to be 5690
pounds. Then assuming the top thickness @ at 0.0, 1.0, 2.0
feet, etc., the proper base thickness for each is computed from
formula (60) and given in the table below.

Case II.—Let the back of the wall be vertical, as in Fig. 19,
or # =90°. From formula (26) the earth pressure P, is found

PG, 18,

to be 4580 pounds. Then assuming thicknesses of the top, the
corresponding base thicknesses are computed and inserted in
the following table.

In this table the column headed “cubic yards” gives the
quantity of masonry in one linear foot of the wall, and it is
seen that in each case this is least for the wall with the thin-
nest top. It is also seen that the vertical walls require less
masonry than the corresponding ones with forward batters.
The columns headed “ per cent ” show these facts more clearly,
the standard of comparison being the vertical rectangular wall
which is taken as 100.
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Assumed Case 1. 0 =99° 28". Case II. 6 = go°.
~op

‘l‘htc:ness. Thi%l.:?:eess. ‘C,:r‘a': Per cent. Thii:l:.‘:ees. X({::IP&: Per cent.
Feet. Feet. Feet. R N
0.0 9.6 3.20 62 7.8 2.60 50
1.0 9.5 3.50 67 7.3 2.77 53
2.0 9.4 3.80 73 7.1 3.03 58
3.0 9.5 4.17 8o 7.1 3.37 65
4.0 9.6 4.57 88 7.1 3.70 71
5.0 9.9 4.97 96 7.1 4.03 77%
6.0 10.2 5.40 104 7.2 4.40 8s
7.0 10.5 5.83 112 7.5 4.83 - 93
7.8 7.8 5.20 100
7.9 10.9 6.27 120

Case III.—Let the back of the wall be inclined backward
at a batter of 1% inches per foot, or 6 = 82° 53’ (Fig. 20).
Here the earth pressure 2, is found to be 3850 pounds.. Then

FiG. s1.

assuming values of the top thickness @, the corresponding
values of the base thickness & are computed from (60) and
given below in the tabulation.

Case IV.—Lastly, let the back of the wall be inclined still
more backward, the batter being 3 inches per foot, or § =75° 58’,
as in Fig. 21. Then the earth pressure is found to be 3200

NI Gy
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pounds, and as before values of & are computed for assumed
values of a.

The following table gives the results of these computations
for Cases III and IV, the columns “ cubic yards” and “per
cent " having the same signification as before. It is seen that
the general laws of economy of material are the same, namely,

Assumed Case III. 6=82° 53’. Case IV. 0 =75°s8".
Top

Thlc“k.neu. Thi??l:em. g:‘%'z Per cent. Thi%;:eeu. ‘(1::,‘35 Per cent,
Feet. Feet. Feet.
0.0 6.6 2.20 42 5.1 1.70 33
1.0 5.9 3.30 44 4.2 1.73 33
2.0 5.4 2.47 ° 473 3.4 1.80 35
2.9 2.9 1.93 37
3.0 5.1 2.70 52
4.0 4.9 2.97 57
4.9 4.9 3.30 63

the thinner the top and the greater the backward batter of
the wall the less is the quantity of masonry. The considera-
tion of these principles in connection with the local circum-
stances of an actual case will hence tend toward economy of
construction. Chief among these local circumstances is the
price of land, and where this is very high a wall with a verti-
cal front and a forward batter of back is often used, al-
though this requires more masonry than any other form, for
the saving in cost of the land may more than balance the
extra expense for masonry. In all cases of design the first
consideration is stability, and the second economy—not econ-
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omy in the cost of material, but in the total expenditure of
money. '

Those who believe in the theory of earth pressure set forth
in Article 9 may ask if its use would lead to the same conclu-
sions regarding economic proportions.. To decide this it %s
necessary to deduce a formula for the thickness of a trape-
zoidal wall under such pressure, and then to make the same
computations for the four cases with the same data.

The fundamental formula (47) is good for all cases. In
this let the values of p, ¥, and Vs be inserted from (49), (51)
and (52), making 2= ¢ and #=44. Then results

7

A cos ¢) = 30A(5* + ab — a% + b4 cot 6 + 2ak cot 6),

Pa(zb cos (01 @) +

and solving this with respect to & there is found
b=—A+VB4+4, . . .. ... (6)
in which the values of 4 and B are

A=Ha+h cot 6) — 22, —_°°502” +¢)

2P cos @

a’ — 2ak cot 6
< “ovsinf g T ’

and from this the base thickness # can be computed for any
values of the given data, namely, the angle of repose of the
earth ¢, its inclined pressure P, as found by Article g, the



82 DESIGN OF RETAINING WALLS. [CHaPr. IV.

angle of inclination of the back of the wall 6, the top thick-
ness a, the vertical height %, and its weight per cubic unit .

Using the same data, the inclined pressure 7, has been
computed for each case, and the base thicknesses found from
formula (67) for the same assumed top thicknesses. The
cubic yards in one linear foot of wall are next obtained, and
an inspection of these shows that the same general laws hold
as before, namely, the thinner the wall and the less the angle
6 the less is the quantity of masonry required.

The subjoined table gives the quantities of masonry 't;or
Case I, Case II, and Case 1V, and by comparing them with

Assumed Case I 0 =gg° 28’ Case II. 6 =go°. Case IV. 6'=75° 58/,

Top -

Thickness. Cubic Per cent Cubic Per cent Cubic Per cent.

a. Yards. Difference. Yards. Difference. Yards. Difference,

Feet.
0.0 2.43 24 1.77 32 1.38 19
1.0 2.77 21 2.00 28 1.40 19
2.0 3.10 19 2.30 24 1.45 “19
3.0 3.50 16 2.63 22
4.0 3.97 13 3.00 19
5.0 4.50 9 3.40 15
6.0 5.07 6

those previously deduced it is seen that they are all less, the
difference being greatest for the triangular walls and least for
those of uniform thickness. The column “per cent difference”
shows in each case the percentage of material which the walls
designed under inclined pressure are less than the correspond-
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ing ones designed under normal pressure. As in practice
walls are not built with a top thickness less than two feet, it
may be said as a rough rule that the hypothesis of inclined
earth pressure (Article g) gives a wall from 10 to 20 per cent
less in size than that of normal earth pressure (Article 8).

Problem 24. Deduce a formula for the thickness of a wall
under inclined earth pressure when ¢=24. Compute the
thickness and quantity of material of such a wall for Case I,
for Case II, and for Case IV.

ARTICLE 25. THE LINE OF RESISTANCE.

Let a be the top thickness and & the base thickness of a
trapezoidal wall whose height is 2. Then the thickness &’ ata
vertical distance y below the top is

V=at@—a), . . . .. (6
and this is represented by B’C’. in Figure 22. Let 7 be the

———
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pressure of the earth, and 7”7 the weight of the wall above
B'C". Let T' be the point where the resultant of 7 and V”
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cuts B'C’; as y varies T/ describes a curve called the line of
‘resistance. When y is zero 7'/ coincides with the middle of the
top. When y equals 2 the point 7'’ coincides with 7 as de-
termined by (50).

The line of resistance is the locus of the point of intersec-
tion of the resultant of the forces above any horizontal jeint
with the plane of that joint. This is a general definition
applicable to triangular and curved sections as well as to trape-
zodial ones.

For a rectangular vertical wall under normal earth pressure
the line of resistance is the common parabola. To prove this
let the origin of coérdinates be taken at the corner 4 in Figure
24, and let AB' =y and B'T’' =z. Now P’ =¢y',in whiche
»

A0 D

B ‘T, o

LTl
Fi1G. 23.

is a function of w, ¢ and & (Article 8), and its lever-arm with
respect to 7/ is 3. The value of V'is vdy, and its arm with
respect to 7’ is x — 46. Then the equation of moments is

¢y . by =vhy(x —3b),

x=ab+§{7,

or
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which represents a parabola with its vertex at the middle of
the top of the wall.

For a triangular wall with a vertical back the line of resist-
ance is a straight line drawn from the top to the point where
the resultant cuts the base. The proof of this is purposely
omitted in order that it may be worked out by the student.

For a trapezoidal section the position of the line of resist-
ance can be computed from (50), (51) and (52), making z = o
for normal earth pressure, putting P=¢y’, 2=yand 6 =4
For example, take a wall for which @ = 34°, 6 = 0°, w = 100,
kh=18,0 ="80° v =140, a=2 and b =5 feet. Here from
formula (25) P is found to be 11.025>. From (68)

V=241

and this inserted in (51) and (52) gives the values of " and Vs
in terms of . Then substituting all in (50) there is found

¢ — 280+ 6748y — 2.303)"
280 +9.757-

From this equation the curve is now easily constructed, thus-

= o, ¢ = 1.00, " and & = 2.00
y= 6, t=1.77, and ¥ = 3.00
¥y =12, t = 1.88, "and & = 4.00
y =18, t = 1.81, and & = 5.00

and it is seen that the line, while lying always within the mid-
dle third, departs most widely from the middle at the base of
the wall. ‘
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Whatever be the form of cross-section the line of resist-
ance can always be located by first determining the earth
pressure and the weight of the wall for several values of y and
then for each making a graphical construction as in Figure 12.
The curve joining the points thus found on the several hori.
zontal joints will be the line of resistance, and to insure proper
stability against rotation it should lie within the middle third
of the wall (Article 17).

Problem 25. Locate graphically the line of resistance in
one of the walls of Case 11, Article 24, determining points at
depths of 6, 12 and 18 feet below the top.

ARTICLE 26. DESIGN OF A POLYGONAL SECTION.

Retaining walls with curved front are now and then built.
The advantages claimed for such a profile are, first, finer
architectural effect, and second, that the line of resistance
may be made to run nearly parallel to the central line of the
wall, thus making it a form of uniform strength and insuring
economy of material.

The determination of the equation of a curved profile to
fulfil the condition that the line of resistance shall cut every
joint at the same fractional part of its length from the edge is
of very great mathematical difficulty, if not impossibility, be-
cause the weight of the wall above any joint and its lever-arm
are unknown functions of the codrdinates of the unknown
curve. By considering the curve to be made up of a number
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of straight lines, however, it is easy to arrange a profile to sat-
isfy the imposed conditions which will not practically differ
from the theoretical curve. The method of doing this will
now be illustrated by a numerical example.

A wall 30 feet in vertical height is to be designed to sup-
port a level bank of earth whose angle of natural slope is 34
degrees and which weighs 100 pounds per cubic foot. The
back of the wall is to be plane and to have an inclination of 8o
degrees. The top of the wall is to be 2 feet thick, and the
weight of the masonry is to be 165 pounds per cubic foot. It

FiG. 24,

is required to design the wall so that the line of resistance
shall cut the base B,(, at its middle point, and also cut the
lines B,C, and B(C at their middle points, B,C, being 20 feet
and BC 10 feet from the top. This insures a factor of infinity
against rotation (Article 17) which is a greater degree of sta-
bility than is usually required in practice, but the method em-
ployed is general, and the example will serve to show how a
wall may be designed to satisfy any imposed condition.

GRSE LISRaSS
' UNIVERSITY
N CALIFORNIA
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First, take the upper part ABCD and consider it as a sim-
ple trapezoidal wall, upon which the normal earth pressure is
found by (25) to be>§4lo pounds. In the general formula (47)
the values of p, V7 and Vs are now to be substituted from (49),
(51) and (52), making z = o and putting 7 equal to $4. This
gives an equation in which all quantities but & are known, and
by its solution there is found the value 4 = ;f:;; feet. This
completely determines the cross-section ABCD so that it is
easy to find the weight ¥ = 5240 pounds, and from (52) its
lever-arm s = 1.55 feet.

Second, take the trapezoid BCC, B, and consider it as acted
upon by four forces, the weight of the upper part 5240 pounds,
its own weight V7, the normal pressure of 20 feet of earth

FiG. 2s.

’%t

“ which is 5656 pounds acting at 6% feet vertically above B,,

and the reaction R of the wall below it which by the hypoth-
esis passes through A/, the middle point of B,C,. Let s be
the lever-arm of V with respect to B, and let B,C, be denoted
by 8. With respect to the centre M/ the lever-arm of V is
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46 — s, that of the 5240 pounds is 46 - 0.21, and that of the
earth pressure is 6. 77+0087b Then the equation of mo-
ments is RIS S e /,,./.- V

5650(6.77 +- 0.0876) = V(&6 — s5) + 5240(36 + 0.21).

Inserting in this the values of PV and Vs in terms of 4, and
then solving, there is found 4 = 8.70 feet. This determines the
cross-section so that its weight 7 is found to be 108.50 pounds,
and the lever-arm of this with respect to B, to be 2.62 feet.

Lastly, the trapezoid B,C,C,B, is treated in a similar man-
ner, as acted upon by five forces, the weights 5240 and 10850
pounds, the pressure of 30 feet of earth which is 12 720 pounds
applied at B,, its own unknown weight 7, and the reaction R
which passes through the middle of B,C,. The lever-arms of
the known forces with respect to that centre being found, the

" equation of moments is

12720(10.15 - 0.0878) = V(3b — s) + 5240(36 4 1.97) + 10850(34 — 0.86),

in which 4 is the base B,(,, and s is the lever-arm of V" with re-
spect to B,. From (51) and (52) the values of V" and Vs are to
be expressed in terms of & and inserted; then by solution
there is found 4 = 13.6 feet.

The points C, C, and C, in the profile of the cross-section
are now known, and a curve may be drawn through therh, or
the front may be built with straight lines. The economy of
the curved profile is indicated by the fact that the cross-section
as determined is 209 square feet, whereas a trapezaidal section,



90 DESIGN OF RETAINING WALLS. [CHaP. IV.

designed under the same conditions has a base thickness of
15.2 feet and a cross-section of 257 square feet.

Problem 26. Design a curved wall for the same data as
above, but under the condition that the line of resistance shall
cut each of the bases BC, B,(,, B,C, at one-third its length from
the outer edge.

ARTICLE 27. DESIGN AND CONSTRUCTION.

When a retaining wall is to be designed its vertical height
will be given. The inclination of its back and the thickness of
its top are to be assumed, in accordance with the principles of
Article 24, so as to result in the least total expenditure for
land, labor and material. The form of section selected will be
usually trapezoidal. '

The normal earth pressure is now computed by the proper
formula of Article 8.

The thickness at the base is then computed by formula (60),
and thus the cross-section of a trapezoidal wall is determined.
The batter of the front of the wall is known by (63), and if
this proves to be greater or less than is thought advisable new
proportions are assumed and another cross-section determined.

By the help of formula (65) the approximate inclination of
a few of the joints should next be found so that the wall may
be built with full security against sliding. It is not always
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necessary to give the joints the full inclination thus computed,
however, since this implies a factor of security of infinity.

As a check on the computations it is well to make a graph-
ical investigation of the proposed wall and determine the fac-
tors of security at the base against rotation (Article 18) and
also against sliding (Article 15). These will, in general, be
less for the base than for any joint above the base. V

Lastly, the maximum pressure per square inch at the edge
of the base joint may be computed (Article 20). If this is less

FiG. 26.

than the allowable working strength of the stone, the wall is
safe against crushing. Only for very high walls will this com-
putation be necessary.

The computed thickness & is the horizontal thickness of the
wall at the top of the foundation, as BC in Figure 22. This
foundation should be built with care, not only to bear the
weight of the wall and prevent it from sliding, but also to pro-



o2 . . DESIGN OF RETAINING WALLS. [CHaPr. IV,

tect it from the action of the rain and frost. Provision should
be made for the drainage of the bank by longitudinal ditches
and by weep-holes through the wall,so that water may not col-
lect and increase the pressure.

It is good practice to batter the back of the wall slightly
forward for about two feet near the top, in order that the frost
may lift the earth upward without exerting lateral pressure
against the wall.

Whether the wall be built with dry rubble or with cut stone
in hydraulic mortar, great attention should be paid to details
of workmanship and construction, all of which should be clearly
set forth in the specifications. The earth mu.s\t'.f)e thrown
loosely against the wall or be dumped against it from above,
but should be carefully packed in layers which slope upward
toward the back.

Problem 27. Let ¢ = 38 degrees, 6 = 10 degrees, w = 100
pounds per cubic foot, v = 150 pounds per cubic foot, =2
feet, @ = 80 degrees. Compare the quantities of material re-
quired for two walls, one g feet high and the other 18 feet
high.
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CHAPTER V.
MASONRY DAMS.

ARTICLE 28. THE PRESSURE OF WATER.

All doubts regarding the direction and intensity of the
lateral pressure against walls vanish when the earth is replaced
by water. For since water has no angle of repose, ¢ = 0°and
6 =0° and all the formulas of Chapter II reduce to (35), P‘»‘f"’ _[ 4
which gives the normal water pressure against a wall of height i 8
% when the depth of the water is also 4. we b3} th.

The principles of hydrostatics show that the direction of -
water pressure is always normal to a submerged plane; also
that the total normal pressure on such a surface is obtained by
multiplying together the weight of a cubic unit of water, the
area of the surface and the depth of its centre of gravity below
the water level. ‘

The water level is usually lower than the top of the dam,
as shown in Figure 27. Let & be the vertical depth of the water
above the base of a trapezoidal dam, 6 the angle which the
back makes with the horizontal, and w the weight of a cubic
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unit of water. Then the surface submerged is su;Lﬁ X 1, the

depth of its centre of gravity below the water level is 42, and
hence the normal pressure is

P=134wd’ +sin 6,

which agrees with (35). The centre of pressure, or the point
at which the resultant pressure must be applied to balance the
actual presssures, is on the back of the dam at a vertical height

A

d P ll»
rv
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of }d above the base; this is known by a theorem of hydro
statics and likewise by Article 12.

The angle ¢ is never less than a right angle for masonry
dams, and hence it will be convenient to use instead of it the
angle % which the plane of the back makes with the vertical.

Then 6 = 9o° + ¢, and the normal pressure is 7- ."~. e

I 4

P=twd'secy, . . . . . . (69

and for a vertical wall, where ¢ = 0°, this becomes P =-§wd".
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The normal pressure P may be decomposed into a hori-
zontal component P’ and a vertical component P "/, whose values
are expressed by

P’ = Pcosp =4wd', P"=Psinp=43%wd’tang; (70)

and if ¢ be a small angle, as is usually the case, the horizon-
tal component 3wd’ is sometimes taken as the actual water
pressure. This is an error on the side of safety, since the ver-
tical component, acting downward, increases the stability of
the dam, unless the water penetrates under the base BC, which
is an element of danger that ought not to be allowed.

Problem 28. For a waste-weir dam the water level may be
higher than 4D by an amount 4. Prove that the normal
pressure is

P=whth+d)+cost, . . . . (71)
and that the centre of pressure is at a vertical distance d, abow}e
B, whose value is given by the formula ‘

_h+3d d
do-—m-g. ¢ e e e .(72)

ARTICLE 29. PRINCIPLES AND METHODS.

The fundamental requirements concerning the design of
masonry dams are the same as those governing all engineering
work ; first, stability, and second, economy. The first requires
that the structure be built so that all its parts shall have
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proper strength, and the second that this shall be done with
the least total expenditure of money. This expenditure con-
sists of two parts, that for material and that for labor, and
economy will result if material can be saved without increasing
the labor. Hence all parts of a structure ought to be of
equal strength (like the “one-hoss shay "), provided that the
cost of the material thus saved is greater than the cost of the
extra labor required; for if one part exceeds the others
in strength it has an excess of material which might have
been saved.

For ordinary retaining walls and for low masonry dams the
trapezoidal form is the only practicable cross-section, since
curved faces do not save sufficient material to balance the cost
of the extra expense of construction. But for high masonry
dams, and as such may be classed those over 80 or 100 feet
high, it not only pays to deviate from the trapezoidal section,
but it is often absolutely necessary to do so in order to reduce
the pressure on the base to allowable limits. The section
adopted in such cases is therefore an approximation to that of
a form of uniform strength.

The general principles of stability of retaining walls set
forth in the preceding pages apply to all masonry structures,
but it will be well to state them briefly again, with especial
reference to dams.

First, there must be proper stability against sliding at
every joint and at every imaginary horizontal section. This
can be done either by bonding the masonry with random
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courses so that no through joints exist, or by inclining such
joints at the proper backward slope (Article 23). The first
method is alone applicable to a dam, and by the use of
hydraulic mortar the whole structure should be made
monolithic.

Second, there must be proper stability against rotation at
every horizontal section of the dam. This will be secured
when the resultant of all the forces above that imaginary base
cuts it within the middle third (Article 17) or at the most at
the limit of the middle third. In a dam there will be two
cases to be considered : (¢) when the reservoir is full of water,
and (§) when the reservoir is empty. For the first case the
line of resistance should not pass without the middle third on
the front or down-stream side, and for the second case it should
not pass without it on the back or up-stream side.

Third, there must be proper security against crushing at
every point within the masonry. Asa general rule this de-
mands that the compressive stress per square inch shall not
exceed 150 pounds, although in a few cases higher values have
been allowed.

It will be found in designing a high dam that the second
principle will determine the thicknesses for about 100 feet
below the top. For greater heights the third principle must
generally be used, and the formulas of Article 20 be applied.
It is indeed doubtful whether these formulas correctly repre-
sent the actual distribution of stress on the base of a high
dam with a polygonal cross-section, for it would naturally be



o8 MASONRY DAMS. [CHae. V.

thought that greater stresses would obtain near the middle
rather than near the edge of the base. If such is the case,
however, the application of the formulas can only err on the
side of safety.

Problem 29. A masonry dam 36 feet high and 24 feet
wide weighs 150 pounds per cubic foot. Find the point
where the resultant cuts the base when the water is 33 feet
deep above the base.

ARTICLE 3o IN\;ESTIGATION OF A TRAPEZOIDAL DAM
(VAN Q.,.u\?ug(g o~ /'ﬁc.v;/t,[ sl 7
The gwen data will furnish the dimensiois of the dam, and

the pormal water pressure on its back will be computed by
(69). Then by the method of Article 18 a graphical investiga-
tion for rotation may be made and the factor of security be
determined for any joint BC. Through joints should not
exist in'a masonry dam, and hence BC will be taken as hori-
zontal in the construction, or even if they do exist BC may be
an imaginary horizontal joint.

The factor of security against rotation may be computed
by the formulas of Article 19, first making z=0° and 6 =
90°+ 4. Then from the given datq P is found by (69), V" and
Vs by (51) and (52), and 7 is computed by (50), in which % is
to be put equal to &, whence finally » is derived by (48). It
will however be more satisfactory for a student to make an
analysis directly from first principles rather than to arbitrarily
use formulas for mere computation. This will be now done
for a particular example.
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The largest trapezoidal dam is that at San Mateo, Cali
fornia. The top thickness is 20 feet, the base thickness is 176
feet, the vertical height is 1?) feet, the batter of the back is 1
to 4, and the masonry is concrete, which probably weighs about
150 pounds per cubic foot. It is required to investigate itc
stability when the water is 165 feet deep above the base,

Let P be the normal water pressure on the back, and V
the weight of dam, both per foot of length. Let BC be the
base, and 7 the point wh;are the resultant of P and V cuts it.

s 7

1 - .- V.& k¢ "p,. P )
Litan e . IQL/. . .« - o T
A

Now with respect to this point the moment of P will equal
the moment of V.~ Let p be the lever-arm of P; let # repre-
sent the distance C7, and s the horizontal distance from B to
the line of direction of V. The lever-arm of V is then
b — s—¢, and the equation of moments is

Pp=Vb—s—1t) or Pp=Vb—Vs—Vt. . (73)

The first member of this equation may be replaced by
Py’ — P"¢", in which P’ and P" are the horizontal and verti-
cal components of £, and p’ and p” are their lever-arms with
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respect to the point 7. Also ¥V may be replaced by v4,
where v denotes the weight of the masonry per cubic foot and
4 is the area of the cross-section. Then

Py —P'p' =1 Ab—As—AY, . . . (74)
which is a formula better adapted to numerical operations.

To apply this to the San Mateo dam the data are d = 16§
feet, tan ¢ = 0.25, @ = 20 feet, 6 = 176 feet, £ =170 fegt, and
v = 150 pounds per cubic foot. Then from (70) 7'~ ~easy " 7’ w:i”

P’ = 850 780 pounds, P” = 0.25P = 212 700 pounds,

1 3
: 7 s “ oy
P avs — - I 1(&/ 4
and from the figure, v 2

P =3d=r55feet, p'=176—0.25 X 55—2
Also the area of the trapezoid is
A =13% X 170(176 + 20) = 16 660 square feet,

and the moment A4s is computed by regarding 4 as the sum of

the triangles 4aB and Dd( and the rectangle 4adD (Figure, - o

28), thus: @ ¥ dang i g Thod Tlee Lelul el {‘g L3

ﬁ/t)v- LFG,SL( A {"L . ::(“b) é )t o W[“I.Z ‘-7J_
As = AaB X %Ba + AadD(Ba + yadf + DC(BC — 34C),

a e tareed et et fre it it

whence 4s = 1 248 820 g:‘_:tp‘gbe Inserting now all values in

(74) and solving far ¢ there i§ found # = 88.6 feet. The result.
ant therefore cuts the base very near the middle, so that
the factor of security against rotation is practically infinity
(Article 17).




ART. 30.] INVESTIGATION OF A TRAPEZOIDAL DAM. 101

It is the custom of some engineers to neglect the vertical
component of the water pressure, and regard only the horizontal
component. Testing the San Mateo dam under this supposi-
tion, P’ equals zero, and, all other quantities being the same
as before, there is found # = 80.2 feet, whence the factor of
security against rotation is

88

"= 88— 80.2

= 11.3,

which shows that the degree of stability is ample.

A masonry dam should be investigated not only for the
case when the reservoir is filled with water, but also for the
case when the reservoir is emptied. Here the tendency to
rotation, or overturning, is usually backward instead of for-
ward. Let S be the point where the direction of the weight I~
cuts the base, and let M/ be the middle of the base. Then the -
factor of security is the ratio of M5B to MS, or

"SR

in which 'the distance s is computed by dividing the value of
As by that of 4. Now, for the San Mateo dam,

\; 1248 820
="16660 — 75.0 feet,

and then 7 is found to have a value of 6.8.
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No through joints exist in this dam, and the method of
construction of the base is such as to preclude all possibility of
sliding. Moreover by the use of (43) the coefficient of friction
which will allow sliding to occur on the base is

_ _ 850780
s= 150 X 16660 >34

a value which would be very low for an imperfect construction.

The compressive stresses on the base may next be investi-
gated by the method of Article 20. When the water in the
reservoir is 165 feet deep the resultant R cuts the base so near
the middle that the compression can be regarded as uniformly
distributed. The pressure normal to the base is '+ P”, and
hence the stress per square inch is

__ 150 X 16660 4-212 700

S 144 X 176

= 107 pounds,

which is probably less than one-sixteenth of the ultimate
strength of good concrete when one year old. ’

If the reservoir should be empty the greatest stress would
come at the heel B, and as V/'is applied at 75 feet from B, that
stress in pounds per square inch is, from formula (58),

_ 2 X 150 X 16660 3X 75\ _
S= 144 X 176 (2— 176)—142'

It will also be found that the stress at the middle of the base is
99 pounds per square inch, that at the toe C is 142 — 99 = 43
pounds per square inch.
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Problem 30. Investigate the security of the San Mateo
dam for a horizontal section 100 feet below its top—(a) when
the water is 95 feet deep above that section ; () when the
reservoir is empty.

ARTICLE 31. DESIGN OF A Low TRAPEZOIDAL SECTION.

When a trapezoidal dam is to be designed its height % will
be given, and also the depth & of the water behind it. The
weight per cubic foot of the masonry v will be known, at least
approximately. The thickness of the top, @, will be assumed;
usually this will serve for a roadway or footway and hence
cannot be less than 8 or 10 feet. The batter of the back, or

Fic. 29.

tan 9, is next assumed, and usually this will be taken small in
order that the weight of the wall 7" may fall as far away from
the toe C as possible. Let M/ be the middle of the base BC; let
S be the point where the direction of V cuts it, and 7 the point
where the direction of the resultant R cuts it. It is plain that
MS will always be less than one-third of MB for any trapezoid
whose back leans forward, and that it becomes equal to one-
third of MB only when 4D is zero and AB is vertical.
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Let & be the length o{ the base BC, and let # be the distance
CT. 1t is required to (?ﬁd | 5 so that M T shall be one-third of
MC, or, what is the sfme thing, that ¢ shall equal §4. Full
security against rotation will then exist both for reservoir full

!
B
Formula (74) is a fundamental one applicable to any sec-(+7 ¢
tion. ly i Zthe problem in hand, the values of the

are to be stated m terms of the ot
quantities, thus 20w (o ore me ‘l& m—“"‘.
// M’k‘l ,7 {q.! (‘v.“( / icm‘)
—}d b—jdtanp —¢ - "

/[I‘:~.. v e e e ! ugc¢(/4 /\/X?/{w L-U\//';
Also the area 4 is express Fy) Oy w{ '] '

il o 1 .
A= yz(a+b) e (73)
and by the method of the last Article the value of the
moment As is found to be

lever-arms and

As = yz(a* + @b+ 8 + h(2a + &) tan ¢). . (77

Inserting, now, all these quantities in (74), and making z = }4,
there is found a quadratic equation in 4 whose solution gives

b=—F+VFF+G, . . ... (78

in which F and G have the values

7/

F—-—(vh +a—lztan'/:)

G= i—l; (P’ 4 P tan ¢) + a* + 2ak tan ¢,
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and from these the proper base 92{ckness can be found, P’ and
P being first computed by (70), or if desired the expressions
for F and G can be written

_1(2d’tan¢ _

F_E( e /ttant/;),
_d'sec’yp |, , .
G= e + a*+ 2a/ tangp;

in which g is the ratio of v to w, or the specific gravity of the
masonry.

If ¢ = 0°, the formula (78) takes the simple form

b= — ot ;'_}:4.3(;', Ce e (9)

which gives the proper base thickness of a trapezoidal dam
with a vertical back. - (f 2 j/

The compressive stress at C in pounds-: per square inch is
now found from (5% 5) or

z(V—[— P”) vA 4+ 3wd® tan ¢
1446 726

i« .« (80)

and if this is less than the specified limiting value, no further
investigation will be necessary; but if greater, then the above
formulas for thickness will not apply and those of the next Ar-
ticle must be used. The limiting value of S is often taken
at 150 pounds per square inch.

The compression at the inner edge B when the reservoir is
empty is less than that at C when it is full, for in any trape-
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zoid where tan ¢ is positive M is less than one-third of /5.

The distance BS can, however, be obtained by dividing (77)

by (76), whence .

s=a’—{—ab-}/6’-l—(za-l—.&)lztangb . 81)
/ 3@+ SR

and then by the use of (58) the unit-stress at B is computed.

In order to show the application of the formulas and at the
same time study the question of economic proportions, let the
following data be taken: %z = 60 feet, d = 57 feet, a = 9 feet,
v = 150 pounds per cubic foot or &= 2.4. Let three designs
be made for which the back has different batters, fxamely,
tan® = }, tanyp = {y,and tan  =o. Using the formula (78),
the base is first found, and then by (76) the area of each
trapezoid ; thus:

tanp =1, b&=36.5 feet, 4 =1365sq.ft.,, = 109 per cent
tan = &, 6 =34.4 feet, A =1302sq.ft., = 104 per cent
tan ¢ =0, &= 32.75 feet, 4 = 1253sq.ft.,, = 100 per cent
From which it is seen that the most advantageous section is
the one with the vertical back. This conclusion might also be
inferred from the discussion in Article 24.

It is the custom of some engineers to neglect the vertical
component of the water pressure. Formula (78) may be
adapted to this hypothesis by making P’ equal to zero in the
quantities # and G, which then become

F=13%(a— ktanyp),
G=£+a’+2ahtan¢.

e e~ e e
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The thickness of the dam compt;ted under this hypothesis is
greater than before. ‘Thus, for the above example, .

tanp =3}, &= 39.8 feet, A = 1466 sq.ft., = 117 per cent
tan $ = &, 6 = 36.2 feet, A = 1356sq.ft.,, = 108 per cent
tan ¢ =0, &= 32.75 feet, A = 1253 sq. ft., = 100 per cent

Problem 31. Find the compressive unit-stress at B and C for
one of the cases of the above numerical example.

ARTICLE 32. DESIGN OF A HIGH TRAPEZOIDAL SECTION.

When the value of % is so great that the formula for thick-
ness deduced in the last article cannot be used the dam is said
- to be “ high.” For such cases the condition # = }4 cannot be
applied, but # must be made greater than 44 so as to reduce
the unit-stress at the toe C. The base thickness will hence be

greater than that given by (78).
Let S be the given limiting unit-stress in pounds per square

foot. The corresponding value of # is, from (57),= 4 70

e
oS

t=ib—6(w4_+.—PTS, e & o e (82)

in which 24 is the equivalent of the weight V. Inserting this
in (74), and also the values for p’, p’/, 4 and As, there is de-
duced a quadratic in & whose solution gives

b: '—K+ m, ¢ o e & . (83)
\ :{ * \'y l"/’n 4 .-1’ ' ;
[} \ f\ sl L L I .,_ - ? " r..u:: (- - ‘:-;-._

.-

/
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in which K and L have the values
K=(P" —}vk tan :p)é,

L= (2d (P’ + P tan )+ vk(a® + 2ak tan tﬁ))é.

If in these P"' = o, the vertical component of the water press-
ure is neglected; and if tan g = o, the back of the trapezoid is
vertical.

In using these formulas the given data are ¢, 4, &, tan ¢, v
and S. Then & is computed, taking the water pressures P’ and
P’ from (75). When ¢ is found, s should be determined by
(81), and then by (58) the stress at B when the reservoir is

empty is computed.

For an example take a = 20 feet, 2 = 170 feet, d = 165
feet, tan ¢ = 0.2, v = 150 pounds per cubic foot and S = 21 000
pounds per cubic foot. Let it be required to find 4, neglect-
ing the vertical component P”” of the water pressure. From
Article 28 the value of P’ is 850 780 pounds,and by hypothesis
P" = o0. Then inserting all values, K = — 20.64, L = 15 506.6,
whence 4 = 145.2 feet. This gives for the area of the section
A4 = 14 042 square feet, and from (82) # = 0.425 4, which locates
the point where the resultant pierces the base when the reser-
voir is full. From (81) there is found s = 61.9 feet = 0.4265,
which gives the point where the line of action of V7 cuts the
base, and when the reservoir is empty the unit-stress at the
back edge of the base is, by (58),

S, = 2X '5:1;(214042 (2 — 3 X 0.426) = 21 000 nearly,
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so that the compression at B for reservoir empty is about the
same as that at C for reservoir full.

Problem 32. Discuss the above example without neglecting
the vertical component of the water pressure.

ARTICLE 33. ECONOMIC SECTIONS FOR HIGH DAMS.

A high trapezoidal dam designed so as to give proper se-
curity against crushing on the base has an excess of stability
in its upper part. Accordingly if the section be polygonal, or
.bounded by curved lines, both in front and back, these may
be arranged so as to save material in the upper parts, thus less-
ening the weight that comes on the base, and hence reducing
its width from that which a trapezoidal section would require.
Such a structure will be approximately one of uniform security
against rotation in its upper portions, and of uniform security
against crushing in its lower portions. The method of design
ing the upper part will be similar to that used in Article 26 for
the retaining wall.

Local and practical considerations will determine the thick-
ness of the top AD. From the principles deduced in Articles
24 and 31 it is plain that to secure the greatest economy of
material the back should be vertical for some distance below
the top. If the upper sub-section 44’D'D be rectangular, the
line of resistance for the case of reservoir empty will cut the
middle of 4’2’ ; and if the height be properly chosen, the line
of resistance for reservoir full will cut it at the front edge of



110

MASONRY DAMS.

[CHAP. V.

the middle third. To find what this height should be let 2 be
the thickness, %' the height AA4’, and & the depth of water

Aa
T T——
A/

Flé. 30. ’
above 4’. Then the equation of moments with reference to a
point in the base distant 42 from 2’ is
twd® X 3d = vak' X }a.

Now if & be taken equal to #/, as it may be in an extreme case,
the solution of this gives

k, =a VE’, . .
masonry'.

. (84)
in which g is the ratio of v to w, or the specific gravity of the

The next sub-section should be a trapezoid, and the entire
section in fact may be considered as made up of trapezoids,
the widths of these being so determined as to secure economy

and stability. The former requires that the back should be
vertical or that its batter should be as small as possible, and
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the latter requires that the lines of resistance for refervoir full
and reservoir empty shall not pass without the n;fddle third,
while the resulting unit-stresses are kept within the specified
limit.

In the upper part of the dam the question of the com-
pression of the masonry need not be considered, and the width
of the base of each sub-section will be found from the require-
ment that the line of resistance for reservoir full cuts that base
at one-third the length from the front edge.

In the lower part of the dam the widths are to be de-
termined by regarding the compressive stresses. Owing to
uncertainties concerning the theory of distribution of these
stresses, and to differences of opinion concerning the manner
in which it should be applied, engineers have not agreed upon
a uniform method of design. The general form of section,
however, is that shown in Figure 30, the back being battered
below a certain depth in order to keep the line of resistance
for reservoir empty well within each base, while the batter of
the front increases downward. The views of different authori-
ties are fully set forth in WEGMANN’S Design and Construc-
tion of Masonry Dams (second edition, New York, 188g),
where also are given sectional drawings of all existing high
dams.

Problem 33. Prove that a triangular section is one of uni-
form stability against rotation when the water level is at the
vertex of the triangle.
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ARTICLE 34. INVESTIGATION OF A POLYGONAL SECTION.

The graphical investigation of the stability and security of
a polygonal section like Figure 30 is so simple in theory that
space need not here bé“nt\aken to set it forth in detail. The
general method of Article 18 is to be followed for the base of \MC
each sub-section, and the only difficulty that need to occur will
be in connection with determiming the positions of the centres M & M
of gravity of the areas above the successive bases. These may ~
be best computed by the method explained below. When the
points S and 7 have been found for each base the factor of
security against rotation is known by Article 17, both for reser-
voir full and reservoir empty, and then the maximum com- "2. 4

N o - .
pressxye stresses are determined as in Artlcle 20. ~———>. g Y -

o odrn LL :
The analytical investigation begms with, tl{e )t‘op s:ib-sec'glon,
which is either a rectangle or a trapezoid (Figure 30), and finds
as in Article 30, or by the formulas of Articlg}g, the degree of
security for its base A’D’. Thus is determined the area 4,,
the corresponding weight 7, and the horizontal distance s,
from its point of application to its back edge. Now let
A’'BCD' be the next trapezoid, let Z be its vertical height, @
its top width, & its base width, 3 the angle of inclination of the
back to the vertical, 4, its area, v the weight of the masonry
per cubic unit, 7, its weight v4, which is applied at a horizon-
tal distance s, from the back edge B. The sum 4,44, is
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the total area 4 whose weight is 4 = V, and the line of action
of this cuts the base at S, whose horizontal distance from the

B

Fi1G. 31.

back edge B is called s. The value of s can be obtained by
taking moments about B, thus:

s= A(s,+ % tan )+ A,s,

it - )

which is the formula for locating the line of resistance when

the reservoir is empty. The values of 4, and 4,s, are found

from the given quantities @, 4, %, tan ¢ by the help of (76
~

4
o=

——

and (77). g == 'é,‘?&_?#-a VYA ['\L/zau/ &) (i Vi

When the reservoir is full let 2’ be the horizontal compo-
nent of the water pressure on the entire back above B, and P’/
the vertical component. Let their lever-arms with respect to
T be p’ and p”. Then the equation of moments is

Py — Py =od,+A)(b—s—12). . . (86)

In this the value of P’is 4wd", and that of p’is §4. If the
batter of the back be uniform from the top to B, the values of
P” and p” are known by (70) and (75). If, however, the dif-
ferent trapezoids have difffrent batters, values for P and ?’

o

.
Lt
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lect P”, and then the dlstgnce CTis

ar
Saarae—s 0 &)

-in which g is the specific gravity of the masonry. From this
the line of resistance can be located when the reservoir is full,

The factor of security against rotation can now be found,
if desired, by (45) both for the case of reservoir empty and
that of reservoir full. The degree of security against crushing
will be deduced by computing the unit-stresses at B and C by
the help of the formulas of Article 20 and then comparing
these with allowable and with ultimate values. The degree
of security against sliding could be easily determined if the
coefficient of friction were known, but as the base is not a
real joint, it will be sufficient to use formula (39), and deduce
the value of f which would allow motion if a joint actually
existed.

The above formulas can be applied to each trapezoid in
succession, 4, being taken as all the area above its top, and
thus the lines of resistance can be traced throughout the en-
tire section.

As a numerical examplelet it be required to test the fourth
trapezoid of the theoretical section of the Quaker Bridge Dam
given in Article 35. The data are 4, = 1823 square feet, s, =
12.4 feet, & =20 feet, tan ¢ = 0.115, @ = 37.4 feet, b =§3.4

-
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feet, 4 = go feet, and g=:iv = 23%; and it is required to find s

and ¢ with the unit-stresses S, and S. First the area of the
given trapezoid is 9o8 square feet, and its moment A4,s, is
21 808 feet cube. Then from.(85) the value of s is 1.8 feet,
and inserting this in (87) there is found # = 17.8 feet. The
lines of resistance here cut the base at the ends of the middle
third so that the factors of security for reservoir full and for
reservoir empty are each 3.0 (Article 17). The unit-stresses
S, and S are also equal, and each will be found to be 111
pounds per square inch. Lastly, from (1) or (39) the coeffi-
cient of friction necessary for equilibrium is 0.59, a value
which cannot be approached in a monolithic structure.

Some authors use the term “ factor of safety” as meaning
the ratio of the horizontal water pressure which would cause
overturning to the actual existing horizontal water pressure.
This should not be confounded with the factor of security
used in this book. '

Problem 34. Given @, 4, %, V, and s, for any trapezoid
(Figure 31). Deduce the value of tan ¢ so that s shall
equal }4.

ARTICLE 35. DESIGN OF A HiGH ECONOMIC SECTION.

The application of formula (86) will in general lead to com-
plicated equations, unless the vertical component of the water
pressure P”’ is neglected. This is an error on the side of safety
and is hence often allowable, particularly when tan % is small,
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The following method is essentially like that devised by
WEGMANN for the design of the Quaker Bridge Dam, and is
here given because of all the different methods it appears to
be best adapted to the comprehension of students.

Using the same notation as in the last article, the top width
a is first assumed, and the uppermost sub-section is made a
rectangle whose height is by (84) equal to 2 #g. The follow-
ing sub-sections will be trapezoids with vertical backs, each
base being determined so that z=}4. To find & for any
trapezoid there will be given 4, and s, from the preceding
trapezoids, its upper base g, its height 4, the total depth of
water 4, and the specific gravity g, while tan % equals zero.
First 4, and A,s, are expressed in terms of &, 4 and %, by (76)
and (77), and these are inserted in (85). Then the resulting
expression for s is put into (86) and # made equal to $4. Thus
is obtained a quadratic, whose solution gives

b=—K+4+VE'FL, . . . « . (8)

in which X and L have the values

1/(44, L4, 64y,
K=-2-(T+a), L=+ e

If, in these, 4 equals zero, the formula reduces to (79), which
should be the case, as the whole section above the base then
becomes a single trapezoid.
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After having found the base of a trapezoid by (88) the
value of s should be computed by (85), taking tan) = 0. This
will be at first greater than 44, but in descending lower (usually
before & becomes 100 feet) a trapezoid will be found where s
exceeds 6. As soon as this occurs formula (88) ceases to be
applicable, for the section has not a sufficient degree of sta-
bility when the reservoir is empty. The back must now be
battered so that s shall equal 5, at the same time keeping
¢t =}6. Introducing these two conditions into (86) and solv-
ing for & there results

b=—(+9)+/5+C+T). - - @

which gives the base of the trapezoid, and thus 4, becomes
known. The amount of batter required is now found by in-
serting in (85) the value of s, from (81), and solving for tan %,
namely :

— Al(s—si) +A,(S _ i’h) —_ *a’h
b 7 s v vy S

in which s is to be taken as §6. Thus the trapezoid is fully
determined, and the next one can be designed, taking 4, 4+ 4,
as the new 4,, s as the new s,, and & as the new a.

After having found the base of a trapezoid by (89), the com-
pressive unit-stress at the ends of said base should be com-
puted by (80). The value of this will be at first less than
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the allowable limit, but in descending lower (usually before &
becomes 150 feet) a trapezoid is reached where it is greater.
As soon as this occurs formula (89) ceases to be applicable, for
the base of the section has not sufficient security against
crushing.

The next value of 4 is to be derived by taking # as given
by (82) and making s = $4. These introduced into (86) pro-
duce a quadratic in 4, and this will be used until the com-
pressive stress at B reaches the allowable limit. When this
oecurs s must be made greater than 44 by expressing its value
from (58) in a manner analogous to (82). The two values of s
and 7 are thus stated in terms of S, and S, the limiting unit-
stresses at B and C, and inserting them in (86) and solving for
4 a quadratic is found from which all the remaining trapezoids
are computed. As soon as any & is found 4, is known, and
then s is derived by (85), taking 4, + 4, as 4. Lastly, using
this value of s, the batter tan ¢ is derived by (90).

This method is open to the objection that the formulas of
Article 20 do not probably give the correct law of distribution
of stress on the base of polygonal sections, and also to the
objection that the water pressure is always taken as horizontal
in direction. On the other hand, it has the advantage of being
simple in use, whereas other methods but little, if any, more
accurate in principle lead to equations of high degree whose
solution can only be effected by tentative processes.

By the help of this method the engineers of the Aqueduct
Commission of the city of New York deduced an economic
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section for the proposed Quaker Bridge Dam. The top thick-
ness was taken at 20 feet and the specific gravity of the
masonry at 2.5. The following are results for the theoretical
section to a depth of 171 feet (see Table II in Report of the
Aqueduct Commission, 1889).

d ] A tan ¢ ¢ s, Ky 5
34.7 20.0 834 o 6.7 10.0 13031 6 516
50 26.2 1187 o 8.7 10.5 14 156 11 328
70 37.4 1823 o 12.5 12.4 15234 15 234
go 53.4 2731 0.115, 17.8 17.8 15984 15984

110 71.2 | 3977 0. 100 25.2 23.7 16 391 17453
130 92.9 5618 o.170 | 35.1 31.7 16 384 18 462
150 114.6 7698 0.170 45.3 40.1 17078 19930
171 137.4 10339 0.171 56.1 49.1 18 219 21 822

In this table the first column contains the depth of the water
in feet, the second the base of each sub-trapezoid in feet, the
third the total area above that base in square feet, the fourth
the batter of the back, the fifth and sixth the distances in feet
from the front and back edges of the base to the lines of
resistance, and the seventh and eighth the stresses at those
edges in pounds per square foot. It will be seen that the San
Mateo dam, 170 feet high (Article 30), has about 61 per cent
more material than this economic section of 171 feet height.

.

Problem 35. Design an economic section, taking the top
thickness as 30 feet and the specific gravity of the masonry
as 24.
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ARTICLE 36. ADDITIONAL DATA AND METHODS.

There has now been given snch a presentation of the
theory of masonry dams, adapted to the needs of students, as
will serve to exemplify the principles which govern their
design. A few concluding remarks concerning data, princi-
ples, and methods will now be made. :

The force of the wind has not been considered in the data.
If the wind blows up-stream when the reservoir is filled, the
stability of the dam is increased ; if it blows down.stream, its
effect will be to produce waves rather than to add to the
water pressure on the back.

The pressure due to the impulse of waves may be inferred
from the fact that the highest pressure observed by STEVEN-
SON in his experiments was 6100 pounds per square foot. The
maximum horizontal pressure per linear foot on the top of a
dam from wave action can, therefore, probably not exceed this
value acting over three or four feet of vertical depth, and this
only when the reservoir is of wide extent.

The horizontal pressure at the water line due to the thrust
of ice should he taken, in the opinion of a board of experts
on the Quaker Bridge Dam, to be 43000 pounds per linear
foot. (Report of the Aqueduct Commission, 1889.)

Let A be the horizontal force at the water line due to ice
thrust, or wave action. Its moment will be Ad, and this is to

".!' o
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be added to the moment of the water pressure. In all the

preceding formulas, therefore, the quantity g—,; should be re-

3 B
placed by % + 91% fn order to include the effect of this hori-
zontal force in the computations. For instance, if the example
in Article 32 is to include the effect of the i¢e thrust, formula

(84) must be modified as stated, taking A = 43 000 pounds.
Then 4 will be found to be 156.3 feet instead of 146.8, and the

.area of the trapezoid will be about 54 per cent greater than

before.

When the computations extend below a permanent water
level on the front of the dam the effect of the back pressure
can easily be introduced into the formulas by substituting
4a* — 4}, for d°, where d is the depth of the water on the back
of the dam, and &, that on the front.

When the back and front 6f the dam are covered with
earth or gravel below a certain level its action may be approxi-
mately estimated by computing the earth pressures according
to the method of Article 8, and then adding the moments of
these to the other external moments. Such computations
however, will always be liable to more or less uncertainty, and
hence should be made with caution.

It is not probable that the theory of Article 20 gives the
correct distribution of stress on the wide base of a polygonal
section, and it seems more likely that in such cases the unit-
pressures at the ends of the base are less than those near the
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middle. If this is the case, the formulas probably err on the
side of safety, even though they neglect the influence of the
shearing stress due to the horizontal pressures. It is known
(see Mechanics of Materials, Article 75) that a shear combines
with a compression normal to it and produces in another
direction a greater compression. But the application of this
principle to stresses in masonry can scarcely be made until
experimental evidence is afforded concerning the laws of dis-
tribution of the unit-stresses.

The theory of a dam which is curved in plan and which
acts more or less like an arch has not been considered here.
It may be stated as the general consensus of opinion, that a
section which resists water pressure by gravity alone, like
those designed in these pages, will not usually be rendered
stronger by being curved in plan. A curve, however, is pleas-
ing to the eye and impresses the observer with an idea of
strength, so that it is often advisable to employ it, even if the
length of the dam be slightly increased.
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